The Anatomy of a Runner: the brain

THE BRAIN is what makes us human. It gives us the capacity to make decisions, produce rational thoughts, or spectacular works of art. It’s responsible for our personality, storing the memories we cherish, and how we view the world. It also governs our ability to speak, eat, breathe, and move.

Disciplined, smart training is the foundation of any athletic endeavor, and proper training is what earns us a seat at the table of endurance. Some athletes have genetic endowments and natural advantages that predispose them to sports. Maybe they respond better to training, the shape of their bodies or the genes they carry make them specifically optimized for certain athletic endeavors. Another subset of great athletes also have cultural and environmental advantages, such as the Kenyans who spend a lifetime being active at altitude. Then there are great athletes who have none of these advantages – the only common denominator between all groups of athletes being the brain.

The question of this post is not what can the human body do, but rather, what more can the human mind add to that?

The 1922 Nobel Prize in Physiology or Medicine winner, Archibald Hill, proposed in 1924 that the heart was protected from anoxia (absence of oxygen resulting in permanent damage) in strenuous exercise by the existence of a governor. Dr. Timothy Noakes, a professor of exercise and sports science at the University of Cape Town, re-introduced Hill’s governor model in 1997 on the basis of modern research. The essence of Noakes’ original central governor theory is that the brain monitors activity, predicting outcomes, and involuntarily implements an appropriate pace that prevents total exhaustion and permanent bodily damage by creating the distressing sensations we interpret as fatigue.

Physiological catastrophes can and do occur in athletes, however, that present conflicts in the governor theory. A story from the 2015 Austin Marathon serves as one example from many.

A5A5550D-7DE9-4B61-82A1-5CE89DFAC172.jpeg
Photo: CBS News

Kenyan runner, Hyvon Ngetich, had been leading most of the race. With two-tenths of a mile left to run, she began to wobble and stagger, and eventually fell down. After failed attempts to get up, Ngetich crawled to the finish line leaving her knees and elbows bloodied and hands stained from the pavement. Ngetich crossed the finish line in third place with a time of 3:04:02, and was immediately treated for dangerously low blood sugar. In a post-race interview with CNN, she said she didn’t remember finishing the race. She had continued the race despite the distressing sensations of fatigue and debilitating physiological failure.

Over time the central governor theory has been revised to include the role of psychological and motivational factors, which is where we begin to uncover the story of endurance.

muscular endurance: the ability of a muscle or group of muscles to repeatedly develop or maintain force without fatiguing.

cardiorespiratory endurance: the ability of the cardiovascular and respiratory systems to deliver blood and oxygen to working muscles, which in turn enables the working muscles to perform continuous exercise. It is an indicator of a person’s aerobic or cardiovascular fitness.

athletic endurance is defined as the ability to continue an activity despite increasing physical or psychological stress, as in the effort to perform additional numbers of muscle contractions before the onset of fatigue.

143F1A7D-D431-4518-B95A-3BA6D27607F6
Courtesy: Conscious Life News

The human brain weighs about 3 pounds (1.4 kilograms). The surface area is 233-465 square inches (1500-2000 cm2), or roughly the size of one to two pages of newspaper. If we flattened the brain’s 1/4 inch thick outer layer, it would cover the size of an office desk. But to keep the brain compact enough to fit into our skull, it folds in on itself.

The simplest commands of the brain are monosynaptic (single connection), like the knee-jerk reflex. The knee-jerk response is a muscular jerk that happens quickly and does not involve the brain. There are lots of these hardwired reflexes, but as tasks become more complex, the circuitry involved is more complicated, and the brain gets involved.

The cerebellum, “little brain”, consists of both grey and white matter, and is responsible for coordinating muscle movement and controlling balance by transmitting information to the spinal cord and other parts of the brain. The cerebellum is constantly receiving updates about the body’s position and movement. It also sends instructions to our muscles that adjust our posture and keeps our body moving smoothly.

cerebrum_animation_small
Cerebrum: Wikipedia

The cerebrum is the largest part of the human brain, controlling memory, movement, speech, emotions, and voluntary motor activities. With the assistance of the cerebellum, the cerebrum controls all voluntary actions in the body. Voluntary actions include running, clapping your hands, or lifting weights – things you are consciously doing.

The cerebral cortex is the outer layer of the cerebrum and consists of gray matter. This is where our conscious thoughts and actions take place; many of the signals our brain receives from our senses are registered in the cerebral cortex.

Basic life functions, such as heart rate, breathing, and blood pressure, is carried out by the brain stem. It regulates whether we feel tired or awake, as well as coughing, sneezing, and swallowing. The brain stem is the body’s “autopilot”.

About the size of a pearl at the base of the brain, the hypothalamus regulates physiological processes, such as blood pressure, heart rate, body temperature, cardiovascular system function, fluid balance, and electrolyte balance. This portion of the brain plays a vital role in maintaining homeostasis: the process of maintaining the body’s equilibrium by monitoring and adjusting physiological processes. It also influences emotional responses, sleep, appetite, and tells the skin to produce sweat when it’s hot to keep you cool.

The hippocampus (HC) region of the brain deals with the formation of long-term memories and spatial navigation. In diseases such as Alzheimer’s, the hippocampus is one of the first regions of the brain to become damaged, which leads to memory loss and disorientation.

The atrophy rate of the hippocampus (HC) is shown to be 2-3% per decade (Raz et al., 2004, 2005), and further accelerated to an annual loss of 1% over the age of 70 (Jack et al., 1998). Recent research, however, has shown the HC is among a few regions of the brain that generate new neurons.

In particular, exercise causes hippocampal neurons to pump out a protein called brain-derived neurotrophic factor (BDNF), which promotes the growth of new neurons. Higher cardiorespiratory fitness levels (VO2 max) are associated with larger hippocampal volumes in late adulthood, and larger hippocampal volumes may, in turn, contribute to better memory function (Erickson et al., 2011; Szabo et al., 2011; Bugg et al., 2012; Maass et al., 2015). (22)

Running Fact: A study published in the Journal of Neurobiology of Learning and Memory finds that running mitigates the negative impacts chronic stress has on the hippocampus region of the brain. “Exercise is a simple and cost-effective way to eliminate the negative impacts on memory of chronic stress,” according to the study’s senior author, Jeff Edwards, associate professor of physiology and developmental biology at BYU.

THE PERSONALITY OF A RUNNER

28906281-0D13-4B26-A8FD-F03DB85FF058
Spirit Run Elite 031318

Observational studies have identified common personality traits among runners, including a strong vision, focus and resilience. Runners consistently exhibit mental toughness, an extraordinary capacity to plan ahead, and the ability to handle unexpected problems with a calm yet competitive demeanor; we are more willing to accept feedback, and acknowledge our mistakes.

Imaging of a runner’s brain show connections in areas required for higher-level thought, including more connectivity between parts of the brain that aid in working memory, multi-tasking, attention, decision-making, and the processing of visual and sensory information. Less activity is noted in a part of the runner’s brain that tends to indicate lack of focus and mind wandering. (24)

A 2009 study found ultra-marathoners were less dependent on rewards (self-motivated), they were more individualistic, and, not surprisingly, exhibited a far greater tolerance for pain. Studies of older runners show them to be more intelligent than their non-running peers, more imaginative, self-sufficient, reserved, and forthright.

The most common trait among runners of all ages is the belief that they possess the resources needed to achieve their own success. (13) (14)

Running Fact: An abstract presented at the 2018 American College of Sports Medicine Conference indicate runners who exhibit ”perfectionist” tendencies were 17 times more likely to suffer an injury that forced them to miss training as compared to other runners.

0ED4873D-91CE-4292-B161-0B40097093CDWhen we exercise, the brain recognizes this as a moment of stress, and invokes a “fight or flight” response. The body’s protection mechanism to this new threat is to release the BDNF protein in the brain. The greater the exercise intensity, the more BDNF proteins are released. At the same time, endorphins, another stress-reducing chemical, is released in the brain. The main purpose of the endorphins is to minimize discomfort and block the feeling of pain, sometimes also associated with a feeling of euphoria.

As exercise continues, physiological changes are signaled to the brain, such as body and skin temperature, increased heart and breathing rates. These signals are interpreted by the brain and compared with previous experience to determine allocation of resources.

NEUROMUSCULAR ADAPTATIONS

57956DF6-E9DB-43F1-A772-BF673269BA91.jpeg

The brain begins to change as soon as the athlete begins a sport, and the changes continue for years. In just one week, athletes develop extra gray matter, and different regions of the brain begin to interact – some neurons strengthen their connections to other neurons as they weaken their connections to others.

After deciding on a specific goal, to run a fast lap around the track for example, several regions of the brain collaborate to determine the best course of action to complete that goal. Initially, neurons in the front of the brain (the prefrontal cortex) are active; a region vital for the top-down control that enables us to focus on a task and consider a range of responses. By predicting what sensations should come back from the body if it achieves the goal, the brain can match the actual sensations received and revise its plan if needed to reduce error. With practice, however, the prefrontal cortex grows quiet; our predictions get faster, more accurate, and the brain becomes more efficient, learning to make decisions sooner.

In just a few sessions of exercise we become stronger, but not because our muscles have suddenly increased in size. The initial gains that take place are neuromuscular adaptations: the brain gets better at communicating with the muscles, using more of them, and using them more efficiently. The brain also learns to tolerate heat, lack of oxygen, and muscle pain. It becomes better at suffering. In essence, the brain is changing.

NEUROPLASTICITY

Neuroplasticity, or brain plasticity, is the process in which your brain’s pathways are altered as an effect of environmental, behavioral, and neural changes. Neuroplasticity occurs as the brain deletes connections that are no longer necessary or useful while strengthening the necessary ones. Which connections are pruned and which are strengthened depends on life experiences and how recently connections have been used. Neurons that grow weak from underuse die off while new experiences and learning new things strengthens others. In general, neuroplasticity is a way for your brain to fine-tune itself for efficiency. To learn new tasks, you need good plasticity.

Neuroplasticity affects both short-term memory (chemical changes) and long-term memory (structural changes). Initial changes in the brain’s structure take place quickly, showing immediate results. These changes are imbedded in short-term memory, but to transfer these changes to long-term memory requires more time (practice). It takes time and repetition for the brain to re-wire new connections, or pathways, that create long-term learning.

Practice is not a new concept for athletes. Distance runners build mileage gradually to teach their bodies to endure long distances, and then we practice these runs until our body transfers the distance to long-term memory. Sir Roger Bannister learned to run the 4-minute mile in the same way. He reduced the race to its simplest common denominator – 400m in one minute or multiples thereof, and trained until running 400m in a minute, 24 km per hour, became automatic.

The third way the brain changes is in function – how and when neurons are activated. Although each of these changes can take place in isolation, chemical, structural and functional changes typically work in concert to facilitate learning.

Fun Fact: Neuroscientist Charles Limb and others have scanned rappers’ brains during a freestyle rap and during a memorized rap. The studies show that during freestyling, there’s a functional change in their neural networks. Through practice, the rappers have reorganized their brain activity, allowing their improvised lyrics to bypass many of the conscious-control portions of the brain, which regulate behavior. 

The greatest discovery regarding neuroplasticity is that nothing affects the brain more than our own behavior, and nothing is more effective than practice to help you learn. In fact research shows that increased difficulty, or increased struggle during practice actually leads to more learning and greater structural change in the brain. These studies have also identified the best methods to prepare, or prime the brain to learn include brain stimulation, exercise, and robotics. (33)

The important take-away, something confirmed from cancer treatments and the study of stroke victims, is that the way our brain functions is unique to each person. It goes beyond the fact that we all learn differently. Every human brain processes commands, makes connections, and functions differently. So the common denominator in learning is practice.

Skill athletes (basketball players, dancers, gymnasts, figure skaters) show greater motor cortex plasticity while endurance athletes (cross-country skiers, orienteers, runners) show enhanced plasticity in task-unrelated brain areas.

Motor Cortex Plasticity In Action: Giannis Antetokounmpo’s slam dunk.

7E91C6D4-693F-4E49-9688-A0F892FA4968
Photograph by Ned Dishman / NBAE / Getty Milwaukee Bucks star forward Giannis Antetokounmpo

In a blatant show of coordination and focus, Antetokounmpo snared the ball mid-air with his right hand while soaring over the head of Knicks’ guard Tim Hardaway Jr. without seeming to notice the obstacle at all – and then slammed the dunk.

 

THE LIMITS OF HUMAN ENDURANCE

Fatigue refers to the inability to continue exercise at a given intensity. In all sports and exercise training, the onset of fatigue varies depending on a person’s fitness level, exercise intensity, duration, and environmental conditions (e.g., heat and humidity). Fatigue develops over time, but is largely dependent on duration and intensity.

54D1CB9E-7E5C-4B8A-A7FB-AF3D93CB3BB0There are two distinct types of fatigue: central and peripheral. Central fatigue (also called Central Nervous System fatigue) involves the brain and spinal cord rather than the muscles. Central fatigue happens in the regions of the brain involved with mood, emotion, and psychological arousal. This is why being psyched, such as during competition, can help performance, but is also why fatigue, like pain, is relative.

With central fatigue, the brain becomes unable to send enough signals to the muscles to maintain optimal muscle activation, resulting in general body fatigue (tiredness, loss of drive, sleepiness, etc.) and reduced muscle force.

4E0DD289-2124-4110-B717-BEBFA63A1C3FPeripheral fatigue results from the muscles becoming fatigued. A lack of resources within the muscle results in the accumulation of lactic acid, causing a burning sensation and fatigue within the muscle. Although both central and peripheral fatigue result in decreased performance of the muscles, they follow different mechanisms.

The question is, how much can you separate the two? It’s hard to distinguish central fatigue (the brain) from peripheral fatigue (the rest of the body) because the brain tends to influence everything, and is in turn influenced by everything.

 

THE CENTRAL GOVERNOR

Although fatigue produces the belief that our resources are limited, exercise generally ceases before the muscles are depleted. In fact, in all forms of exercise fatigue develops before all skeletal muscles are recruited. Just 35-50% of the active muscle mass is recruited during prolonged exercise (Tucker et al., 2004; Amann et al., 2006), and even during maximal exercise this increases to only about 60% (Sloniger et al., 1997a,b; Albertus, 2008).

Muscle biopsies from cyclers revealed that intramuscular measurements were no different at exhaustion compared to rest, and that these (ATP) levels never dropped below 50% of resting concentrations at any time during the exercise bout, suggesting fatigue causes people to terminate exercise well before muscle energy reserves are depleted (Noakes & Gibson, 2004; Parkin, Carey, Zhao, & Febbraio, 1999).

This supports the updated theory that fatigue is a central (brain) perception – a sensation or emotion – and not a direct physical event. Exercise seems to be regulated in anticipation to insure biological failure never occurs (in healthy humans).

Based on studies done at the time, this new definition of fatigue supported the idea that a central governor reduces the mass of muscle recruited during prolonged exercise gradually to prevent the development of muscle glycogen depletion and muscle rigor, or of hyperthermia leading to heat stroke. In other words, fatigue is one way the brain protects the body and preserves homeostasis by regulating power output – what runners will recognize as pacing.

If fatigue is an emotion, it will (like pain) be perceived differently by different people. Ultimately, the Borg Scale of Perceived Exertion was developed, which matches how hard you feel you are working to a “relative” scale of numbers from 6 to 20. The physical sensation of fatigue increases along the Borg RPE scale as a linear function of exercise duration. Maintaining a strategy that follows this linear increase of effort has been thought to produce the optimum pacing strategy (start slow/easy, finish faster).

A3812207-CD43-4E22-A047-5A2E615BC89E

The Borg RPE scale has since been described as the manifestation of information about body temperature, oxygen levels, fuel storage, and the more subtle indicators like mood or how much you slept last night. Perceived effort (RPE) gradually increases based on a combination of these psychological and physiological changes. Runners probably don’t consciously correlate pacing to the Borg scale, however, and researchers disagree as to the extent pacing decisions/computations take place consciously and voluntarily or unconsciously and automatically. Where they do agree is on effort: how hard it feels dictates how long you can sustain.

Understanding how we control the feeling of effort is still being studied, especially as it relates to pacing. Two concurrent studies recently looked at pacing methodologies. One uses an effort-based approach where runners increased pace based on self-determined effort rather than the traditional approach of pre-set increments along an increasing scale (start slow/finish faster). The effort-based subjects reached higher VO2 max values. This study, by Alexis Mauger, was co-published in the British Journal of Sports Medicine alongside another study (by Noake’s student, Fernando Beltrami) which used a “reverse” protocol that started fast and gradually slowed. This protocol produced higher than “max” VO2 max values.

Alex Hutchinson aptly summed up these conclusions in his book Endure: Mind, Body, and the Curiously Elastic Limits of Human Performance, ”If you execute a perfectly paced race, that means you effectively decided within the first few strides how fast you would complete the full distance. There’s no opportunity to surprise yourself. . .”

Once exercise begins, pace is continuously modified by continuous feedback to the brain from conscious sources including information of the distance covered (Faulkner et al., 2011) and of the end-point (duration and intensity). Studies show an athlete’s perceived exertion can be positively influenced by knowing the duration of an exercise bout, and that energy is held in reserve and available for an end-spurt regardless of their rating of perceived exertion (RPE). (27) (28).

Other conscious deceptions that improve performance and positively impact RPE include sudden noise, music, seeing the finish line or an encouraging smile, rinsing the mouth with carbohydrate (without actually ingesting the fluid), being provided with inaccurate information by a clock that runs slowly, or the pace of a prior performance that had been deceptively increased by 2%, and a host of psychological factors, including hypnosis.

Interestingly, just swishing a glucose solution in the mouth led to improvements in 1-hour cycling performance, whereas intravenous infusion of glucose did not (Carter, Jeukendrup, & Jones, 2004.) These effects are probably not specific to glucose; recent evidence suggests that simply handling ibuprofen without ingesting it promotes pain relief, for example (Rutchick & Slepian, 2013). Glucose is absorbed almost entirely in the gut, so it would be impossible for glucose briefly swished in the mouth to cause an increase in available blood glucose (Gunning & Garber, 1978). Instead, the presence of glucose in the mouth may simply provide an anticipatory signal of glucose availability, which leads some experts to argue that the body’s glucose resource issue is one of allocation, not of limited supply. (32)

FFC1C5ED-3F08-489A-A3E8-0B782BEFE888
The Role of Glucose in Self-Control; researchgate.net

 

The Greatest Human Strength

RPE prevents the athlete from continuing exercise at a given pace when it might cause bodily harm. This anticipatory regulation, or pacing, balances the desire for optimal performance with the requirement to defend homeostasis. You may not even notice the body’s regulatory reaction at first, but gradually the effort required to sustain a given pace increases. Ultimately, exercise is terminated when the perceived effort reaches a level that is considered higher than the perceived benefit. (25) This conscious decision of whether to maintain, increase or decrease the current workload or indeed to terminate exercise altogether may be the outcome of a balance between motivation and the sense of effort.

One of the most obvious characteristics of human exercise performance is that athletes begin exercise at different intensities, or paces, depending on the expected duration of exercise – a bout of short duration is begun at a much faster pace than one of longer duration. Also, athletes typically run harder in competition than in training. The point is that athletes always show an anticipatory component to their exercise performance that seems to be influenced by neural mechanisms relating to willpower (self-control), motivation and belief.

ap335192391138
Diana Nyad and Bonnie Stoll prepare for Nyad’s swim to Florida in 2012. She failed that attempt, but returned a year later to complete the 110-mile-long journey. Photo Courtesy: npr

In 2013, at 64 years old, Diana Nyad set out to be the first person to swim from Havana to Florida without a shark cage. A marathon swimmer can expect chafing, nausea, severe shivering and hypothermia, swollen lips, an irritated mouth, diarrhea, extreme weight loss, and sleep deprivation. At the peak of her strength, age 28, she tried but failed to complete this swim. She later said: “I never had to summon so much will power. I’ve never wanted anything so badly, and I’ve never tried so hard.” Coming back to the sport 30 years later, she claimed, “I thought I might even be better at 60 than I was at 30. You have a body that’s almost as strong, but you have a much better mind.”

Nearly 53 hours after jumping into the ocean in Havana, Nyad finished the 110-mile (180 km) swim; her fifth attempt since 1978 and the fourth since turning 60. In one interview she said, “ — you tell me what your dreams are. What are you chasing? It’s not impossible. Name it.”

Research has suggested that self-control relies on a limited resource – that it unfortunately appears to wane over time similar to a muscle that becomes fatigued with overuse. Humans are less willing to exert effort the longer they have already exerted effort. This so-called ‘ego depletion’ effect has been supported by over 200 separate studies, which show that repeatedly resisting temptation drains your ability to withstand future enticements. With the right motivation, however, it appears you may be able to persevere even when your willpower strength has been depleted.

Motivation combines internal and external factors to stimulate the desire and energy to be continually interested, committed to, or make an effort to attain a goal. It is the result of conscious and unconscious factors such as the (1) intensity of desire or need, (2) incentive or reward value of the goal, and (3) expectations of the individual and of his or her peers. These are the reasons we behave in a certain way. (35)

When motivational arousal is high and must be concentrated within a brief period, the intensity of motivation must also be great. It is the difference, for example, between moving 100 pounds of books one book at a time or all at once, or running an all-out 400m challenge versus enduring a 10,000m race or marathon. Motivation tends to increase as the difficulty of the task increases until the required effort is greater than is justified by the motive – or the required effort surpasses the individual’s skills and abilities. At this point motivational arousal drops. We can see this play out time and again on the marathon course where runners find the reward of finishing the race no longer surpasses the pain of continuing to run.

An increasingly accepted body of exercise physiology has emerged that looks to psychology to understand endurance. This ‘psychobiological model based on motivational intensity’ theory (Brehm and Self, 1989; Gendolla and Richter, 2010) suggests that perception of effort and potential motivation are the central determinants of exercise duration, with people consciously deciding how much or how little effort to apply based on a number of considerations. These new studies suggest endurance is strongly influenced by the manner in which the brains of runners generate the sensations of fatigue.

Remember that fatigue is an emotion entirely self-generated by each athlete’s brain, and therefore unique to each individual – or illusionary. Based on this model, the winning athlete is the one whose illusionary symptoms [of fatique] interfere the least with actual performance.

But psychologists have also found evidence among athletes in what they call “self-efficacy,” or a belief in their own competence and success. This is where self-efficacy converges with the placebo-effect.

Studies repeatedly confirm that interventions such as sugar pills, ice/cold/lukewarm baths, massage, caffeine, beet juice, altitude training, or even a “lucky” ball, in the case of golfers, improve our game. Athletes everywhere swear by them, yet science repeatedly proves the effects are null or ambiguous at best.

Christopher Beedie, a sports psychologist at the Canterbury Christ Church University in England, is among the few scientists who study the placebo effect in athletics. His work often examines how elite athletes perform under intense fatigue when they think they have some kind of performance enhancement.

Beedie recently finished the largest placebo study ever done in athletics—600 subjects in all—and found that the people most likely to respond to placebo were the ones experienced using supplements. Perhaps the previous supplements the athletes had taken primed them to have a placebo response, or maybe athletes who naturally respond to a sports placebo are also likely to have taken performance enhancers. Either way, it suggests that artificially boosted performance and performance boosted from expectation produce similar effects. In some cases, athletes performed better when given a sugar pill than the athletes that were given certain performance enhancing drugs.

Even in the arena of these performance enhancing drugs and placebos, especially for elite athletes, there’s a limit to the benefits of both psychological and pharmacological performance enhancers, so why not just use belief instead? “We’re trying to educate athletes into the idea that the headroom is there to be filled, and drugs are not necessarily the only way of filling that headroom,” Beedie says. “Confidence is the drug of champions.”

In the end, the question we all share is how do we go further/longer/faster; what is the secret of endurance?

Dr. Lara Boyd, Director of the Brain Behaviour Lab, is a physical therapist and a neuroscientist leading the effort to understand what therapies positively alter patterns of brain activity after a stroke. In a research-based TEDx Talk, Boyd describes how neuroplasticity gives you the power to shape the brain you want.

The new discovery is that learning changes our brains differently. My brain will go about learning a new task differently than your brain will learn the same new task. Understanding these differences, these individual patterns, is the future of neuroscience – and possibly sports science as well.

Boyd suggests we understand how we learn. What is it that your brain responds best to? For runners learning to endure, maybe this means experimenting with self-talk, visualization, or forcing yourself to try a new training approach altogether. Coaches are increasingly realizing they can push athletes to new limits just by asking them to do something they didn’t think they could do.

Even when athletes were sufficiently motivated, by monetary rewards or recognition for example, they did not perform as well as athletes who were led to believe they could accomplish the task.

Humans keep doing impossible things. Running a 4-minute mile, running 100 miles or more, lifting 500 pounds over our head, being an undefeated wrestler with no arms or legs. Each of these things have been accomplished even though public opinion claimed they were impossible at the time. The difference was that in each example these people believed, or were tricked into believing they could do this thing.

The pursuit of endurance is a unique journey for each of us, but it seems science has concluded what athletes have known all along – that there’s more in the tank, if you’re willing to believe it’s there.

 

Running Notes:

  • A 2017 animal study published in the journal Behavioural Brain Research concluded that a sprint interval training regimen, rather than intensive endurance training regimen has the potential to improve anxiety and depression through a greater increase in (brain-derived neurotrophic factor) contents in the brain.” (10)
  • A NOTE ON MUSIC: Diversionary techniques to distract the mind, such as listening to music or self-talk, were discussed in a previous post on Pain, and have proven effective in lowering the perception of effort. Music, in particular, can narrow attention and divert the mind from the sensations of fatigue. However, this holds true for low and moderate exercise intensities only; at high intensities, perception of fatique overrides the impact of music. At high intensities, the physiological feedback to the brain regarding things like respiration rate or blood lactate accumulation dominates the conversation, and music fails to divert the mind from the body’s feedback. Listening to music seems to shape how the mind interprets symptoms of fatigue, however, which may enable athletes to perform more efficiently resulting in greater endurance. (16)
  • Studies demonstrate that running economy significantly changed, along with perceived effort, based on whether the runners knew they were running 20 minutes or whether they did not know the duration, even if they ended up running 20 minutes.
  • In a recent study published in BMC Medicine, the 64-day ultramarathon TransEurope FootRace Project followed 10 ultra-endurance runners covering about 4,500 km from Bari, Italy to the North Cape, Norway recording a large data collection of brain imaging scans. This study indicates cerebral atrophy among the runners amounted to a reduction of approximately 6% throughout the two months of the race, but was completely reversed within the 6-month follow-up. The results of this unique study, which revealed no brain lesions, gave clues to the effect of extreme fatigue with energy deficits on cortical grey matter volume. Having an understanding of what the brain does during an ultra-marathon event could help refine research on the matter of mind over muscle in determining exercise tolerance in endurance athletes, but may also benefit military personnel involved in physical work over prolonged periods and patients affected by unexplained chronic fatigue syndromes.
  • A 2011 study (Erickson et al.) demonstrated that 1 year of aerobic exercise increased the volume of the hippocampus by 2% in elderly adults, while controls who underwent 1 year of stretching exercises exhibited a 1.4% decrease in hippocampal volume.
  • Kids who participated in vigorous physical activity scored three points higher, on average, on their academic test, which consisted of math, science, English, and world studies. (23)
  • Telling runners they look relaxed makes them burn measurably less energy to sustain the same pace. Giving rugby players a post game debriefing focused on what they did right rather than what they did wrong had effects that continued to linger a full week later. (34)

Is Brain Stimulation the Next Big Thing?

Over the past decade, athletes, coaches, and researchers have been seduced by the performance-boosting promises of brain stimulation. On a ride-and-zap-your-brain-like-the-pros tour through the Alps, Alex Hutchinson wonders whether it really works—and whether we want it to. Read the full article from OutsideOnline here. . .

 

References:

  1. National Geographic. “Command Central.” 1996-2011. (June 14, 2011). 
  2. Dancing or Fitness Sport? The Effects of Two Training Programs on Hippocampal Plasticity and Balance Abilities in Healthy Seniors ; Frontiers in Human Nueroscience
  3. The Brain: Why Athletes Are Geniuses; Discover Magazine
  4. Exercise and the brain: something to chew on
  5. New Finding: Different Types of Exercise Affect Different Parts of the Brain; Conscious Life News
  6. ScienceDirect:  Sports and brain morphology – A voxel-based morphometry study with endurance athletes and martial artists
  7. Neurobiological effects of physical exercise; Wikipedia
  8. The Central Governor Model of Exercise Regulation Teaches Us Precious Little about the Nature of Mental Fatigue and Self-Control Failure; Frontiers in Human Neuroscience
  9. Longitudinal gains in self-regulation from regular physical exercise
  10. ScienceDirect: High impact running improves learning 
  11. A 2-Year Prospective Cohort Study of Overuse Running Injuries: The Runners and Injury Longitudinal Study (TRAILS).
  12. Fatigue: Mind Over Muscle; Velo News
  13. Journal of Gerontology
  14. Traits of Mentally Tough Runners; Running Competitor
  15. Ultra-marathon runners are different: investigations into pain tolerance and personality traits of participants of the TransEurope FootRace 2009.
  16. Music in Sport and Exercise: An Update on Research and Application; The Sport Journal
  17. High impact running improves learning; ScienceDirect
  18. Testing the Strength Model of Self-Control: Does Willpower Resemble a Muscle? CHRISTOPHER L. FULLERTON BSc
  19. What You Need to Know about Willpower: The Psychological Science of Self-Control; American Psychological Association
  20. Evidence from neuroimaging to explore brain plasticity in humans during an ultra-endurance burden; BMC Medicine
  21. The Central Governor Model of Exercise Regulation Teaches Us Precious Little about the Nature of Mental Fatigue and Self-Control Failure ; British Journal of Sports Medicine
  22. Dancing or Fitness Sport? The Effects of Two Training Programs on Hippocampal Plasticity and Balance Abilities in Healthy Seniors; Frontiers in Human Neuroscience
  23. Neurobiological Effects of Physical Exercise; Wikipedia
  24. Differences in Resting State Functional Connectivity between Young Adult Endurance Athletes and Healthy Controls; Frontiers in Human Neuroscience
  25. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance; British Journal of Sports Medicine
  26. Training Science
  27. Exercising with reserve: exercise regulation by perceived exertion in relation to duration of exercise and knowledge of endpoint; British Journal of Sports Medicine
  28. An analysis of pacing strategies during men’s world-record performances in track athletics.; Tucker, Lambert, Noakes 2006
  29. Precooling Can Prevent the Reduction of Self-Paced Exercise Intensity in the Heat; Medicine & Science in Sports & Exercise. 42(3):577-584, MAR 2010 
  30. Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole body homeostasis; Timothy David Noakes Frontiers in Physiology
  31. The nature of self-regulatory fatigue and “ego depletion”: Lessons from physical fatigue Daniel R. Evans, Ian A. Boggero, and Suzanne C. Segerstrom
  32. The Role of Glucose in Self-Control Christopher J Beedie, Andrew M. Lane
  33. After watching this, your brain will not be the same | Lara Boyd | TEDx
  34. ENDURE: Mind, Body, and the Curiously Elastic Limits of Human Performance, by Alex Hutchinson
  35. Motivation
  36. Differential modulation of motor cortex plasticity in skill- and endurance-trained athletes. US National Library of Medicine
  37. The Brain: Why Athletes are Geniuses; Discover Magazine

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s