The Anatomy of a Runner: the brain

THE BRAIN is what makes us human. It gives us the capacity to make decisions, produce rational thoughts, or spectacular works of art. It’s responsible for our personality, storing the memories we cherish, and how we view the world. It also governs our ability to speak, eat, breathe, and move.

Disciplined, smart training is the foundation of any athletic endeavor, and proper training is also what earns us a seat at the table of endurance. Some athletes have genetic endowments and natural advantages that predispose them to sports. Maybe they respond better to training, the shape of their bodies or the genes they carry make them specifically optimized for certain athletic endeavors. Another subset of great athletes also have cultural and environmental advantages, such as the Kenyans who spend a lifetime being active at altitude. Then there are great athletes who have none of these advantages – the only common denominator between all groups of athletes being the brain.

The question of this post is not what can the human body do, but rather, what more can the human mind add to that?

The 1922 Nobel Prize in Physiology or Medicine winner, Archibald Hill, proposed in 1924 that the heart was protected from anoxia (absence of oxygen resulting in permanent damage) in strenuous exercise by the existence of a governor. Dr. Timothy Noakes, a professor of exercise and sports science at the University of Cape Town, re-introduced Hill’s governor model in 1997 on the basis of modern research. The essence of Noakes’ original central governor theory is that the brain monitors activity, predicting outcomes, and involuntarily implements an appropriate pace that prevents total exhaustion and permanent bodily damage by creating the distressing sensations we interpret as fatigue.

Physiological catastrophes can and do occur in athletes, however, that present conflicts in the governor theory. A story from the 2015 Austin Marathon serves as one example from many.

A5A5550D-7DE9-4B61-82A1-5CE89DFAC172.jpeg
Photo: CBS News

Kenyan runner, Hyvon Ngetich, had been leading most of the race. With two-tenths of a mile left to run, she began to wobble and stagger, and eventually fell down. After failed attempts to get up, Ngetich crawled to the finish line leaving her knees and elbows bloodied and hands stained from the pavement. Ngetich crossed the finish line in third place with a time of 3:04:02, and was immediately treated for dangerously low blood sugar. In a post-race interview with CNN, she said she didn’t remember finishing the race. She had continued the race despite the distressing sensations of fatigue and debilitating physiological failure.

Over time the central governor theory has been revised to include the role of psychological and motivational factors, which is where we begin to uncover the story of endurance.

muscular endurance: the ability of a muscle or group of muscles to repeatedly develop or maintain force without fatiguing.

cardiorespiratory endurance: the ability of the cardiovascular and respiratory systems to deliver blood and oxygen to working muscles, which in turn enables the working muscles to perform continuous exercise. It is an indicator of a person’s aerobic or cardiovascular fitness.

athletic endurance is defined as the ability to continue an activity despite increasing physical or psychological stress, as in the effort to perform additional numbers of muscle contractions before the onset of fatigue.

143F1A7D-D431-4518-B95A-3BA6D27607F6
Courtesy: Conscious Life News

The human brain weighs about 3 pounds (1.4 kilograms). The surface area is 233-465 square inches (1500-2000 cm2), or roughly the size of one to two pages of newspaper. If we flattened the brain’s 1/4 inch thick outer layer, it would cover the size of an office desk. But to keep the brain compact enough to fit into our skull, it folds in on itself.

The simplest commands of the brain are monosynaptic (single connection), like the knee-jerk reflex. The knee-jerk response is a muscular jerk that happens quickly and does not involve the brain. There are lots of these hardwired reflexes, but as tasks become more complex, the circuitry involved is more complicated, and the brain gets involved.

The cerebellum, “little brain”, consists of both grey and white matter, and is responsible for coordinating muscle movement and controlling balance by transmitting information to the spinal cord and other parts of the brain. The cerebellum is constantly receiving updates about the body’s position and movement. It also sends instructions to our muscles that adjust our posture and keeps our body moving smoothly.

cerebrum_animation_small
Cerebrum: Wikipedia

The cerebrum is the largest part of the human brain, controlling memory, movement, speech, emotions, and voluntary motor activities. With the assistance of the cerebellum, the cerebrum controls all voluntary actions in the body. Voluntary actions include running, clapping your hands, or lifting weights – things you are consciously doing.

The cerebral cortex is the outer layer of the cerebrum and consists of gray matter. This is where our conscious thoughts and actions take place; many of the signals our brain receives from our senses are registered in the cerebral cortex.

Basic life functions, such as heart rate, breathing, and blood pressure, is carried out by the brain stem. It regulates whether we feel tired or awake, as well as coughing, sneezing, and swallowing. The brain stem is the body’s “autopilot”.

About the size of a pearl at the base of the brain, the hypothalamus regulates physiological processes, such as blood pressure, heart rate, body temperature, cardiovascular system function, fluid balance, and electrolyte balance. This portion of the brain plays a vital role in maintaining homeostasis: the process of maintaining the body’s equilibrium by monitoring and adjusting physiological processes. It also influences emotional responses, sleep, appetite, and tells the skin to produce sweat when it’s hot to keep you cool.

The hippocampus (HC) region of the brain deals with the formation of long-term memories and spatial navigation. In diseases such as Alzheimer’s, the hippocampus is one of the first regions of the brain to become damaged, which leads to memory loss and disorientation.

The atrophy rate of the hippocampus (HC) is shown to be 2-3% per decade (Raz et al., 2004, 2005), and further accelerated to an annual loss of 1% over the age of 70 (Jack et al., 1998). Recent research, however, has shown the HC is among a few regions of the brain that generate new neurons.

In particular, exercise causes hippocampal neurons to pump out a protein called brain-derived neurotrophic factor (BDNF), which promotes the growth of new neurons. Higher cardiorespiratory fitness levels (VO2 max) are associated with larger hippocampal volumes in late adulthood, and larger hippocampal volumes may, in turn, contribute to better memory function (Erickson et al., 2011; Szabo et al., 2011; Bugg et al., 2012; Maass et al., 2015). (22)

Running Fact: A study published in the Journal of Neurobiology of Learning and Memory finds that running mitigates the negative impacts chronic stress has on the hippocampus region of the brain. “Exercise is a simple and cost-effective way to eliminate the negative impacts on memory of chronic stress,” according to the study’s senior author, Jeff Edwards, associate professor of physiology and developmental biology at BYU.

THE PERSONALITY OF A RUNNER

28906281-0D13-4B26-A8FD-F03DB85FF058
Spirit Run Elite 031318

Observational studies have identified common personality traits among runners, including a strong vision, focus and resilience. Runners consistently exhibit mental toughness, an extraordinary capacity to plan ahead, and the ability to handle unexpected problems with a calm yet competitive demeanor; we are more willing to accept feedback, and acknowledge our mistakes.

Imaging of a runner’s brain show connections in areas required for higher-level thought, including more connectivity between parts of the brain that aid in working memory, multi-tasking, attention, decision-making, and the processing of visual and sensory information. Less activity is noted in a part of the runner’s brain that tends to indicate lack of focus and mind wandering. (24)

A 2009 study found ultra-marathoners were less dependent on rewards (self-motivated), they were more individualistic, and, not surprisingly, exhibited a far greater tolerance for pain. Studies of older runners show them to be more intelligent than their non-running peers, more imaginative, self-sufficient, reserved, and forthright.

The most common trait among runners of all ages is the belief that they possess the resources needed to achieve their own success. (13) (14)

Running Fact: An abstract presented at the 2018 American College of Sports Medicine Conference indicate runners who exhibit ”perfectionist” tendencies were 17 times more likely to suffer an injury that forced them to miss training as compared to other runners.

0ED4873D-91CE-4292-B161-0B40097093CDWhen we exercise, the brain recognizes this as a moment of stress, and invokes a “fight or flight” response. The body’s protection mechanism to this new threat is to release the BDNF protein in the brain. The greater the exercise intensity, the more BDNF proteins are released. At the same time, endorphins, another stress-reducing chemical, is released in the brain. The main purpose of the endorphins is to minimize discomfort and block the feeling of pain, sometimes also associated with a feeling of euphoria.

As exercise continues, physiological changes are signaled to the brain, such as body and skin temperature, increased heart and breathing rates. These signals are interpreted by the brain and compared with previous experience to determine allocation of resources.

NEUROMUSCULAR ADAPTATIONS

57956DF6-E9DB-43F1-A772-BF673269BA91.jpeg

The brain begins to change as soon as the athlete begins a sport, and the changes continue for years. In just one week, athletes develop extra gray matter, and different regions of the brain begin to interact – some neurons strengthen their connections to other neurons as they weaken their connections to others.

After deciding on a specific goal, to run a fast lap around the track for example, several regions of the brain collaborate to determine the best course of action to complete that goal. Initially, neurons in the front of the brain (the prefrontal cortex) are active; a region vital for the top-down control that enables us to focus on a task and consider a range of responses. By predicting what sensations should come back from the body if it achieves the goal, the brain can match the actual sensations received and revise its plan if needed to reduce error. With practice, however, the prefrontal cortex grows quiet; our predictions get faster, more accurate, and the brain becomes more efficient, learning to make decisions sooner.

In just a few sessions of exercise we become stronger, but not because our muscles have suddenly increased in size. The initial gains that take place are neuromuscular adaptations: the brain gets better at communicating with the muscles, using more of them, and using them more efficiently. The brain also learns to tolerate heat, lack of oxygen, and muscle pain. It becomes better at suffering. In essence, the brain is changing.

NEUROPLASTICITY

Neuroplasticity, or brain plasticity, is the process in which your brain’s pathways are altered as an effect of environmental, behavioral, and neural changes. Neuroplasticity occurs as the brain deletes connections that are no longer necessary or useful while strengthening the necessary ones. Which connections are pruned and which are strengthened depends on life experiences and how recently connections have been used. Neurons that grow weak from underuse die off while new experiences and learning new things strengthens others. In general, neuroplasticity is a way for your brain to fine-tune itself for efficiency. To learn new tasks, you need good plasticity.

Neuroplasticity affects both short-term memory (chemical changes) and long-term memory (structural changes). Initial changes in the brain’s structure take place quickly, showing immediate results. These changes are imbedded in short-term memory, but to transfer these changes to long-term memory requires more time (practice). It takes time and repetition for the brain to re-wire new connections, or pathways, that create long-term learning.

Practice is not a new concept for athletes. Distance runners build mileage gradually to teach their bodies to endure long distances, and then we practice these runs until our body transfers the distance to long-term memory. Sir Roger Bannister learned to run the 4-minute mile in the same way. He reduced the race to its simplest common denominator – 400m in one minute or multiples thereof, and trained until running 400m in a minute, 24 km per hour, became automatic.

The third way the brain changes is in function – how and when neurons are activated. Although each of these changes can take place in isolation, chemical, structural and functional changes typically work in concert to facilitate learning.

Fun Fact: Neuroscientist Charles Limb and others have scanned rappers’ brains during a freestyle rap and during a memorized rap. The studies show that during freestyling, there’s a functional change in their neural networks. Through practice, the rappers have reorganized their brain activity, allowing their improvised lyrics to bypass many of the conscious-control portions of the brain, which regulate behavior. 

The greatest discovery regarding neuroplasticity is that nothing affects the brain more than our own behavior, and nothing is more effective than practice to help you learn. In fact research shows that increased difficulty, or increased struggle during practice actually leads to more learning and greater structural change in the brain. These studies have also identified the best methods to prepare, or prime the brain to learn include brain stimulation, exercise, and robotics. (33)

The important take-away, something confirmed from cancer treatments and the study of stroke victims, is that the way our brain functions is unique to each person. It goes beyond the fact that we all learn differently. Every human brain processes commands, makes connections, and functions differently. So the common denominator in learning is practice.

Skill athletes (basketball players, dancers, gymnasts, figure skaters) show greater motor cortex plasticity while endurance athletes (cross-country skiers, orienteers, runners) show enhanced plasticity in task-unrelated brain areas.

Motor Cortex Plasticity In Action: Giannis Antetokounmpo’s slam dunk.

7E91C6D4-693F-4E49-9688-A0F892FA4968
Photograph by Ned Dishman / NBAE / Getty Milwaukee Bucks star forward Giannis Antetokounmpo

In a blatant show of coordination and focus, Antetokounmpo snared the ball mid-air with his right hand while soaring over the head of Knicks’ guard Tim Hardaway Jr. without seeming to notice the obstacle at all – and then slammed the dunk.

 

THE LIMITS OF HUMAN ENDURANCE

Fatigue refers to the inability to continue exercise at a given intensity. In all sports and exercise training, the onset of fatigue varies depending on a person’s fitness level, exercise intensity, duration, and environmental conditions (e.g., heat and humidity). Fatigue develops over time, but is largely dependent on duration and intensity.

54D1CB9E-7E5C-4B8A-A7FB-AF3D93CB3BB0There are two distinct types of fatigue: central and peripheral. Central fatigue (also called Central Nervous System fatigue) involves the brain and spinal cord rather than the muscles. Central fatigue happens in the regions of the brain involved with mood, emotion, and psychological arousal. This is why being psyched, such as during competition, can help performance, but is also why fatigue, like pain, is relative.

With central fatigue, the brain becomes unable to send enough signals to the muscles to maintain optimal muscle activation, resulting in general body fatigue (tiredness, loss of drive, sleepiness, etc.) and reduced muscle force.

4E0DD289-2124-4110-B717-BEBFA63A1C3FPeripheral fatigue results from the muscles becoming fatigued. A lack of resources within the muscle results in the accumulation of lactic acid, causing a burning sensation and fatigue within the muscle. Although both central and peripheral fatigue result in decreased performance of the muscles, they follow different mechanisms.

The question is, how much can you separate the two? It’s hard to distinguish central fatigue (the brain) from peripheral fatigue (the rest of the body) because the brain tends to influence everything, and is in turn influenced by everything.

 

THE CENTRAL GOVERNOR

Although fatigue produces the belief that our resources are limited, exercise generally ceases before the muscles are depleted. In fact, in all forms of exercise fatigue develops before all skeletal muscles are recruited. Just 35-50% of the active muscle mass is recruited during prolonged exercise (Tucker et al., 2004; Amann et al., 2006), and even during maximal exercise this increases to only about 60% (Sloniger et al., 1997a,b; Albertus, 2008).

Muscle biopsies from cyclers revealed that intramuscular measurements were no different at exhaustion compared to rest, and that these (ATP) levels never dropped below 50% of resting concentrations at any time during the exercise bout, suggesting fatigue causes people to terminate exercise well before muscle energy reserves are depleted (Noakes & Gibson, 2004; Parkin, Carey, Zhao, & Febbraio, 1999).

This supports the updated theory that fatigue is a central (brain) perception – a sensation or emotion – and not a direct physical event. Exercise seems to be regulated in anticipation to insure biological failure never occurs (in healthy humans).

Based on studies done at the time, this new definition of fatigue supported the idea that a central governor reduces the mass of muscle recruited during prolonged exercise gradually to prevent the development of muscle glycogen depletion and muscle rigor, or of hyperthermia leading to heat stroke. In other words, fatigue is one way the brain protects the body and preserves homeostasis by regulating power output – what runners will recognize as pacing.

If fatigue is an emotion, it will (like pain) be perceived differently by different people. Ultimately, the Borg Scale of Perceived Exertion was developed, which matches how hard you feel you are working to a “relative” scale of numbers from 6 to 20. The physical sensation of fatigue increases along the Borg RPE scale as a linear function of exercise duration. Maintaining a strategy that follows this linear increase of effort has been thought to produce the optimum pacing strategy (start slow/easy, finish faster).

A3812207-CD43-4E22-A047-5A2E615BC89E

The Borg RPE scale has since been described as the manifestation of information about body temperature, oxygen levels, fuel storage, and the more subtle indicators like mood or how much you slept last night. Perceived effort (RPE) gradually increases based on a combination of these psychological and physiological changes. Runners probably don’t consciously correlate pacing to the Borg scale, however, and researchers disagree as to the extent pacing decisions/computations take place consciously and voluntarily or unconsciously and automatically. Where they do agree is on effort: how hard it feels dictates how long you can sustain.

Understanding how we control the feeling of effort is still being studied, especially as it relates to pacing. Two concurrent studies recently looked at pacing methodologies. One uses an effort-based approach where runners increased pace based on self-determined effort rather than the traditional approach of pre-set increments along an increasing scale (start slow/finish faster). The effort-based subjects reached higher VO2 max values. This study, by Alexis Mauger, was co-published in the British Journal of Sports Medicine alongside another study (by Noake’s student, Fernando Beltrami) which used a “reverse” protocol that started fast and gradually slowed. This protocol produced higher than “max” VO2 max values.

Alex Hutchinson aptly summed up these conclusions in his book Endure: Mind, Body, and the Curiously Elastic Limits of Human Performance, ”If you execute a perfectly paced race, that means you effectively decided within the first few strides how fast you would complete the full distance. There’s no opportunity to surprise yourself. . .”

Once exercise begins, pace is continuously modified by continuous feedback to the brain from conscious sources including information of the distance covered (Faulkner et al., 2011) and of the end-point (duration and intensity). Studies show an athlete’s perceived exertion can be positively influenced by knowing the duration of an exercise bout, and that energy is held in reserve and available for an end-spurt regardless of their rating of perceived exertion (RPE). (27) (28).

Other conscious deceptions that improve performance and positively impact RPE include sudden noise, music, seeing the finish line or an encouraging smile, rinsing the mouth with carbohydrate (without actually ingesting the fluid), being provided with inaccurate information by a clock that runs slowly, or the pace of a prior performance that had been deceptively increased by 2%, and a host of psychological factors, including hypnosis.

Interestingly, just swishing a glucose solution in the mouth led to improvements in 1-hour cycling performance, whereas intravenous infusion of glucose did not (Carter, Jeukendrup, & Jones, 2004.) These effects are probably not specific to glucose; recent evidence suggests that simply handling ibuprofen without ingesting it promotes pain relief, for example (Rutchick & Slepian, 2013). Glucose is absorbed almost entirely in the gut, so it would be impossible for glucose briefly swished in the mouth to cause an increase in available blood glucose (Gunning & Garber, 1978). Instead, the presence of glucose in the mouth may simply provide an anticipatory signal of glucose availability, which leads some experts to argue that the body’s glucose resource issue is one of allocation, not of limited supply. (32)

FFC1C5ED-3F08-489A-A3E8-0B782BEFE888
The Role of Glucose in Self-Control; researchgate.net

 

The Greatest Human Strength

RPE prevents the athlete from continuing exercise at a given pace when it might cause bodily harm. This anticipatory regulation, or pacing, balances the desire for optimal performance with the requirement to defend homeostasis. You may not even notice the body’s regulatory reaction at first, but gradually the effort required to sustain a given pace increases. Ultimately, exercise is terminated when the perceived effort reaches a level that is considered higher than the perceived benefit. (25) This conscious decision of whether to maintain, increase or decrease the current workload or indeed to terminate exercise altogether may be the outcome of a balance between motivation and the sense of effort.

One of the most obvious characteristics of human exercise performance is that athletes begin exercise at different intensities, or paces, depending on the expected duration of exercise – a bout of short duration is begun at a much faster pace than one of longer duration. Also, athletes typically run harder in competition than in training. The point is that athletes always show an anticipatory component to their exercise performance that seems to be influenced by neural mechanisms relating to willpower (self-control), motivation and belief.

ap335192391138
Diana Nyad and Bonnie Stoll prepare for Nyad’s swim to Florida in 2012. She failed that attempt, but returned a year later to complete the 110-mile-long journey. Photo Courtesy: npr

In 2013, at 64 years old, Diana Nyad set out to be the first person to swim from Havana to Florida without a shark cage. A marathon swimmer can expect chafing, nausea, severe shivering and hypothermia, swollen lips, an irritated mouth, diarrhea, extreme weight loss, and sleep deprivation. At the peak of her strength, age 28, she tried but failed to complete this swim. She later said: “I never had to summon so much will power. I’ve never wanted anything so badly, and I’ve never tried so hard.” Coming back to the sport 30 years later, she claimed, “I thought I might even be better at 60 than I was at 30. You have a body that’s almost as strong, but you have a much better mind.”

Nearly 53 hours after jumping into the ocean in Havana, Nyad finished the 110-mile (180 km) swim; her fifth attempt since 1978 and the fourth since turning 60. In one interview she said, “ — you tell me what your dreams are. What are you chasing? It’s not impossible. Name it.”

Research has suggested that self-control relies on a limited resource – that it unfortunately appears to wane over time similar to a muscle that becomes fatigued with overuse. Humans are less willing to exert effort the longer they have already exerted effort. This so-called ‘ego depletion’ effect has been supported by over 200 separate studies, which show that repeatedly resisting temptation drains your ability to withstand future enticements. With the right motivation, however, it appears you may be able to persevere even when your willpower strength has been depleted.

Motivation combines internal and external factors to stimulate the desire and energy to be continually interested, committed to, or make an effort to attain a goal. It is the result of conscious and unconscious factors such as the (1) intensity of desire or need, (2) incentive or reward value of the goal, and (3) expectations of the individual and of his or her peers. These are the reasons we behave in a certain way. (35)

When motivational arousal is high and must be concentrated within a brief period, the intensity of motivation must also be great. It is the difference, for example, between moving 100 pounds of books one book at a time or all at once, or running an all-out 400m challenge versus enduring a 10,000m race or marathon. Motivation tends to increase as the difficulty of the task increases until the required effort is greater than is justified by the motive – or the required effort surpasses the individual’s skills and abilities. At this point motivational arousal drops. We can see this play out time and again on the marathon course where runners find the reward of finishing the race no longer surpasses the pain of continuing to run.

An increasingly accepted body of exercise physiology has emerged that looks to psychology to understand endurance. This ‘psychobiological model based on motivational intensity’ theory (Brehm and Self, 1989; Gendolla and Richter, 2010) suggests that perception of effort and potential motivation are the central determinants of exercise duration, with people consciously deciding how much or how little effort to apply based on a number of considerations. These new studies suggest endurance is strongly influenced by the manner in which the brains of runners generate the sensations of fatigue.

Remember that fatigue is an emotion entirely self-generated by each athlete’s brain, and therefore unique to each individual – or illusionary. Based on this model, the winning athlete is the one whose illusionary symptoms [of fatique] interfere the least with actual performance.

But psychologists have also found evidence among athletes in what they call “self-efficacy,” or a belief in their own competence and success. This is where self-efficacy converges with the placebo-effect.

Studies repeatedly confirm that interventions such as sugar pills, ice/cold/lukewarm baths, massage, caffeine, beet juice, altitude training, or even a “lucky” ball, in the case of golfers, improve our game. Athletes everywhere swear by them, yet science repeatedly proves the effects are null or ambiguous at best.

Christopher Beedie, a sports psychologist at the Canterbury Christ Church University in England, is among the few scientists who study the placebo effect in athletics. His work often examines how elite athletes perform under intense fatigue when they think they have some kind of performance enhancement.

Beedie recently finished the largest placebo study ever done in athletics—600 subjects in all—and found that the people most likely to respond to placebo were the ones experienced using supplements. Perhaps the previous supplements the athletes had taken primed them to have a placebo response, or maybe athletes who naturally respond to a sports placebo are also likely to have taken performance enhancers. Either way, it suggests that artificially boosted performance and performance boosted from expectation produce similar effects. In some cases, athletes performed better when given a sugar pill than the athletes that were given certain performance enhancing drugs.

Even in the arena of these performance enhancing drugs and placebos, especially for elite athletes, there’s a limit to the benefits of both psychological and pharmacological performance enhancers, so why not just use belief instead? “We’re trying to educate athletes into the idea that the headroom is there to be filled, and drugs are not necessarily the only way of filling that headroom,” Beedie says. “Confidence is the drug of champions.”

In the end, the question we all share is how do we go further/longer/faster; what is the secret of endurance?

Dr. Lara Boyd, Director of the Brain Behaviour Lab, is a physical therapist and a neuroscientist leading the effort to understand what therapies positively alter patterns of brain activity after a stroke. In a research-based TEDx Talk, Boyd describes how neuroplasticity gives you the power to shape the brain you want.

The new discovery is that learning changes our brains differently. My brain will go about learning a new task differently than your brain will learn the same new task. Understanding these differences, these individual patterns, is the future of neuroscience – and possibly sports science as well.

Boyd suggests we understand how we learn. What is it that your brain responds best to? For runners learning to endure, maybe this means experimenting with self-talk, visualization, or forcing yourself to try a new training approach altogether. Coaches are increasingly realizing they can push athletes to new limits just by asking them to do something they didn’t think they could do.

Even when athletes were sufficiently motivated, by monetary rewards or recognition for example, they did not perform as well as athletes who were led to believe they could accomplish the task.

Humans keep doing impossible things. Running a 4-minute mile, running 100 miles, lifting 500 pounds over our head, being an undefeated wrestler with no arms or legs. Each of these things have been accomplished even though public opinion claimed they were impossible at the time. The difference was that in each example these people believed, or were tricked into believing they could do this thing.

The pursuit of endurance is a unique journey for each of us, but it seems science has concluded what athletes have known all along – that there’s more in the tank, if you’re willing to believe it’s there.

 

Running Notes:

  • A 2017 animal study published in the journal Behavioural Brain Research concluded that a sprint interval training regimen, rather than intensive endurance training regimen has the potential to improve anxiety and depression through a greater increase in (brain-derived neurotrophic factor) contents in the brain.” (10)
  • A NOTE ON MUSIC: Diversionary techniques to distract the mind, such as listening to music or self-talk, were discussed in a previous post on Pain, and have proven effective in lowering the perception of effort. Music, in particular, can narrow attention and divert the mind from the sensations of fatigue. However, this holds true for low and moderate exercise intensities only; at high intensities, perception of fatique overrides the impact of music. At high intensities, the physiological feedback to the brain regarding things like respiration rate or blood lactate accumulation dominates the conversation, and music fails to divert the mind from the body’s feedback. Listening to music seems to shape how the mind interprets symptoms of fatigue, however, which may enable athletes to perform more efficiently resulting in greater endurance. (16)
  • Studies demonstrate that running economy significantly changed, along with perceived effort, based on whether the runners knew they were running 20 minutes or whether they did not know the duration, even if they ended up running 20 minutes.
  • In a recent study published in BMC Medicine, the 64-day ultramarathon TransEurope FootRace Project followed 10 ultra-endurance runners covering about 4,500 km from Bari, Italy to the North Cape, Norway recording a large data collection of brain imaging scans. This study indicates cerebral atrophy among the runners amounted to a reduction of approximately 6% throughout the two months of the race, but was completely reversed within the 6-month follow-up. The results of this unique study, which revealed no brain lesions, gave clues to the effect of extreme fatigue with energy deficits on cortical grey matter volume. Having an understanding of what the brain does during an ultra-marathon event could help refine research on the matter of mind over muscle in determining exercise tolerance in endurance athletes, but may also benefit military personnel involved in physical work over prolonged periods and patients affected by unexplained chronic fatigue syndromes.
  • A 2011 study (Erickson et al.) demonstrated that 1 year of aerobic exercise increased the volume of the hippocampus by 2% in elderly adults, while controls who underwent 1 year of stretching exercises exhibited a 1.4% decrease in hippocampal volume.
  • Kids who participated in vigorous physical activity scored three points higher, on average, on their academic test, which consisted of math, science, English, and world studies. (23)
  • Telling runners they look relaxed makes them burn measurably less energy to sustain the same pace. Giving rugby players a post game debriefing focused on what they did right rather than what they did wrong had effects that continued to linger a full week later. (34)

 

References:

  1. National Geographic. “Command Central.” 1996-2011. (June 14, 2011). 
  2. Dancing or Fitness Sport? The Effects of Two Training Programs on Hippocampal Plasticity and Balance Abilities in Healthy Seniors ; Frontiers in Human Nueroscience
  3. The Brain: Why Athletes Are Geniuses; Discover Magazine
  4. Exercise and the brain: something to chew on
  5. New Finding: Different Types of Exercise Affect Different Parts of the Brain; Conscious Life News
  6. ScienceDirect:  Sports and brain morphology – A voxel-based morphometry study with endurance athletes and martial artists
  7. Neurobiological effects of physical exercise; Wikipedia
  8. The Central Governor Model of Exercise Regulation Teaches Us Precious Little about the Nature of Mental Fatigue and Self-Control Failure; Frontiers in Human Neuroscience
  9. Longitudinal gains in self-regulation from regular physical exercise
  10. ScienceDirect: High impact running improves learning 
  11. A 2-Year Prospective Cohort Study of Overuse Running Injuries: The Runners and Injury Longitudinal Study (TRAILS).
  12. Fatigue: Mind Over Muscle; Velo News
  13. Journal of Gerontology
  14. Traits of Mentally Tough Runners; Running Competitor
  15. Ultra-marathon runners are different: investigations into pain tolerance and personality traits of participants of the TransEurope FootRace 2009.
  16. Music in Sport and Exercise: An Update on Research and Application; The Sport Journal
  17. High impact running improves learning; ScienceDirect
  18. Testing the Strength Model of Self-Control: Does Willpower Resemble a Muscle? CHRISTOPHER L. FULLERTON BSc
  19. What You Need to Know about Willpower: The Psychological Science of Self-Control; American Psychological Association
  20. Evidence from neuroimaging to explore brain plasticity in humans during an ultra-endurance burden; BMC Medicine
  21. The Central Governor Model of Exercise Regulation Teaches Us Precious Little about the Nature of Mental Fatigue and Self-Control Failure ; British Journal of Sports Medicine
  22. Dancing or Fitness Sport? The Effects of Two Training Programs on Hippocampal Plasticity and Balance Abilities in Healthy Seniors; Frontiers in Human Neuroscience
  23. Neurobiological Effects of Physical Exercise; Wikipedia
  24. Differences in Resting State Functional Connectivity between Young Adult Endurance Athletes and Healthy Controls; Frontiers in Human Neuroscience
  25. The anticipatory regulation of performance: the physiological basis for pacing strategies and the development of a perception-based model for exercise performance; British Journal of Sports Medicine
  26. Training Science
  27. Exercising with reserve: exercise regulation by perceived exertion in relation to duration of exercise and knowledge of endpoint; British Journal of Sports Medicine
  28. An analysis of pacing strategies during men’s world-record performances in track athletics.; Tucker, Lambert, Noakes 2006
  29. Precooling Can Prevent the Reduction of Self-Paced Exercise Intensity in the Heat; Medicine & Science in Sports & Exercise. 42(3):577-584, MAR 2010 
  30. Fatigue is a brain-derived emotion that regulates the exercise behavior to ensure the protection of whole body homeostasis; Timothy David Noakes Frontiers in Physiology
  31. The nature of self-regulatory fatigue and “ego depletion”: Lessons from physical fatigue Daniel R. Evans, Ian A. Boggero, and Suzanne C. Segerstrom
  32. The Role of Glucose in Self-Control Christopher J Beedie, Andrew M. Lane
  33. After watching this, your brain will not be the same | Lara Boyd | TEDx
  34. ENDURE: Mind, Body, and the Curiously Elastic Limits of Human Performance, by Alex Hutchinson
  35. Motivation
  36. Differential modulation of motor cortex plasticity in skill- and endurance-trained athletes. US National Library of Medicine
  37. The Brain: Why Athletes are Geniuses; Discover Magazine

The Anatomy of a Runner: Pain

The sixth in a series of posts about what makes runners uniquely equipped to run. This post explores why it hurts. . . and how to make it stop.

IMG_3450
Photo: Jonathan Moore/Getty Images

Being a distance runner is about handling pain. If you can’t manage pain, you probably won’t end up as a distance runner.”

KARA GOUCHER, American long-distance runner

There are many ways to categorize pain, but a broad definition would be acute vs chronic. Acute pain comes on suddenly, has a limited duration, and is often caused by damage to tissue (bone, muscle, organs). Chronic pain lasts longer and is more resistant to medical treatment, such as with long-term illnesses like osteoarthritis.

IMG_33971 of 3 graphics from totalinjury.com: How the Brain Responds to Pain

IMG_3395

WHY IT HURTS

IMG_3374Recurring pain is normally caused by:

  • mechanical injury, such as a fall or twisted joint;
  • repetitive micro trauma, as with overuse injuries that cause stress to the tendons or bones, or micro tears to the skin, as with calluses or blisters; or
  • muscle imbalances – weak glutes, overdeveloped quads, or not having a strong core, for example.

The medical community says “pain is what you say it is” because pain is subjective. A person’s general health, previous experiences, stress, anxiety, depression, and motivation can influence how we perceive pain.

IMG_3448.JPG
Totalinjury.com

Soreness vs Pain

Muscle Soreness

Everyone gets sore with intense exercise. Pain from sore muscles is usually felt the next day and comes from microscopic tears in the muscle fiber. Rebuilding of the muscle damage creates larger, stronger muscles.

If soreness seems especially severe and lasts for several days, it’s probably delayed onset muscle soreness (DOMS), and may be a result of performing new exercises at a relatively high intensity. Studies suggest theories to explain the mechanisms of DOMS, including lactic acid, muscle spasm, connective tissue damage, muscle damage, inflammation and enzyme efflux.

Muscles build up resistance to DOMS with multiple sessions, but new runners who can’t shake the burn after a day or two can try massage or light exercise. Cryotherapy, stretching, homeopathy, ultrasound and electrical current modalities have demonstrated no effect on the alleviation of muscle soreness or other DOMS symptoms.

Reference: Cheung K, Hume PA, Maxwell L. Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med. 2003;33:145–164

Sharp Pain

A sharp pain during exercise – in contrast to muscle soreness – can be indicative of an injury. This type of pain can be located in the muscles or joints, and may linger without fully going away even after a period of rest. Runners should not push through a sharp pain since it can exacerbate the injury.

IMG_3447
Source: American Physical Therapy Association (APTA)

ATTACK AND HEAL

IMG_3449The body’s response to injury is inflammation, which is designed to attack and heal. The early stages of inflammation enlist the immune system to protect the body and control infection. Like pain, inflammation is categorized as acute or chronic.

John Hunter (1728–1793, London surgeon and anatomist) was the first to realize that acute inflammation was a response to injury that was generally beneficial: “But if inflammation develops, regardless of the cause, still it is an effort whose purpose is to restore the parts to their natural functions.”

Increased blood flow to the area causes redness and heat; the accumulation of fluid causes swelling, pain is due to the release of chemicals that stimulate nerve endings, and loss of function is a combination of factors.

Inflammation is part of the natural healing process; without it wounds and tissue damage would never heal. Reducing inflammation may be necessary in some cases where inflammation has caused further inflammation – becoming self-perpetuating, which may lead to chronic inflammation.

When joint tissues have not been given adequate time to fully regenerate between workouts, they may become chronically inflamed and/or degenerate to the point of serious injury. Overuse injuries, such as runner’s knee, develop in this manner. It’s the harder than normal workouts that cause significant tissue damage and post-workout inflammation. For this reason, most training programs increase duration and/or intensity more slowly to allow the body the necessary time to recover and adapt.

Note: Scientists at Emory University School of Medicine in Atlanta, Georgia, found in a study that poor sleep quality, and short sleep durations are associated with higher levels of inflammation.”which in turn increases the risk of developing heart disease and stroke.” What drives the inflammation in the first place is still a mystery.

Pain Management

Physiologists at the University of Wisconsin used spinal injections of a powerful painkiller to block lower-body pain in a group of cyclists; the cyclists actually got slower. They initially felt great and started out faster than normal, but then faded. Without the feedback of pain, they couldn’t pace themselves properly. Training to live with pain: What we can learn from Olympic athletes 

Everyone reacts differently to pain, which means how each person manages their pain will also be unique. Complicating each approach is the fact that injuries themselves react differently to treatment therapies. Following is at least a partial list of pain management therapies, in no particular order.

Ice or Heat? If the injury is sudden and acute, ice is preferred for the initial two or three days post injury – 20 minutes each two to three hours until the ‘heat’ comes out of the injury. Ice will also reduce inflammation and provides pain relief by reducing the blood flow to that area. (A bag of frozen vegetables, such as peas or corn, is an excellent way to ice an injury.)

Heat should be avoided in the first 48 hours as it encourages bleeding. Once the ‘heat’ is out of the injury, heat packs can be used to stimulate blood flow, which will aid healing, help muscles relax and ease the pain – 20 minutes a few times a day using a heat pack, or alternatively take a warm bath or hot shower. Heat stimulates sensory receptors to block the transmission of pain signals to the brain.

Post Exercise: Ice, Heat, or Both? Although light exercises or gentle stretching may be equally effective in reducing pain after a hard bout of exercise or race, ice baths, or cold water immersion, has long been a popular interventional strategy (the ideal temperature range seems to be between 50 and 59° F for 10-15 minutes).

There is some reasoning that the benefit has less to do with the temperature of the water than the immersion itself, however, and the deeper underwater the body is, the better (in other words, jumping in a lake or swimming pool is even better than soaking in a tub).

Read more:  Ice, heat or a little of both? How do you recover from a hard workout?

Tart Cherry Juice: Researchers have found tart cherries reduce a type of inflammatory activity in the body by about 38% (Naproxen, a powerful NSAID, provides a 41% reduction). Long-distance runners drinking cherry juice before marathon-level events have less muscle damage and up to 1/3 less post-event soreness compared to those who did not drink cherry juice. Students given 12 ounces of tart cherry juice before and after strenuous resistance training suffered only a 4% reduction in muscle strength the next day, compared with a 22% loss in exercisers drinking a placebo.

IMG_3389
1 of 5 graphics from RunnersWorld “Where it Hurts”

Meditation: studies show that meditation increases immune function, decreases pain, decreases inflammation at the Cellular Level, decreases anxiety, depression and stress, increases grey matter of the brain and cortical thickness in areas related to paying attention, improves focus and memory (see all the studies at psychology today.com.) Lebron James, Kobe Bryant, Misty May-Treanor and Kerri Walsh are a few of the athletes that meditate to improve their game.

Strapping tape vs supportive tape: taping can stabilize and support the injury, provide pain-relief via de-loading of the vulnerable or painful structures, and facilitate normal movement, muscles or postural patterns.

  • Rigid strapping tape is commonly referred to as ‘sports tape’ or ‘athletic tape’.
  • Elastic strapping tape can be used when less rigidity or support is required.
  • Kinesiology tape is an improved version of elastic sports tape that acts to dynamically assist muscle function.
IMG_3393
RunnersWorld
IMG_3390
RunnersWorld

Massage: Massage has been utilized in the treatment of illness and injury for thousands of years by health care practitioners as a treatment for reducing stress, pain and muscle tension. Nonetheless, research has generally failed to demonstrate massage significantly contributes to the reduction of pain associated with delayed onset muscle soreness, enhances sports performance and recovery, or plays a significant role in the rehabilitation of sports injuries. The most successful treatments combined a massage therapy program that also included stretching, walking, swimming, aerobics, strengthening exercises, and education on posture and body mechanics. (Reference: The Role of Massage in Sports Performance and Rehabilitation: Current Evidence and Future Direction – Jason Brummitt, MSPT, SCS, ATC  North American Journal of Sports Physical Therapy)

Three forms of massage are frequently reported in sports medicine literature: effleurage, petrissage, and deep transverse friction massage (DTFM).

Massage therapy modalities can include Swedish, Deep Tissue, Sports Massage, Trigger Point Therapy, Thai Massage, Thai Herbal Compresses, Hot Stone, Lymphatic Draining Therapy, Shiatsu, Cupping, and Reflexology, among others.

Acupuncture: Dating back more than 2,500 years, acupuncture is based on the premise that there are more than 2,000 points in the human body connected by bioenergetic pathways, known as meridians where Qi, or energy, flows. When a pathway is blocked the disruptions can lead to imbalances and chronic disease.

In various studies, acupuncture has proven beneficial in the treatment of chronic health conditions, and has been found safe for children. It works, in part, by stimulating the central nervous system to release natural chemicals that alter bodily systems, pain and other biological processes.

Proprioception / Balance Exercises: These exercises teach your body to control the position of a deficient or injured joint. A common example is the use of a balance or wobble board after an ankle sprain. Unpredictable movements provoked by the balance board re-educates the body to react without thinking, restoring natural balance and proprioceptive reactions.

IMG_3391
RunnersWorld

Stretching: In its most basic form, stretching is a natural and instinctive activity. Considered a form of exercise, stretching improves the muscle’s felt elasticity and achieves comfortable muscle tone. The result is a feeling of increased muscle control, flexibility, and range of motion.

There are five different types of stretching: ballistic, dynamic, SMF stretching, PNF stretching, and static stretching. (Read about each one here.)

Athletes stretch before and after exercise in an attempt to reduce risk of injury and increase performance, although these practices are not always based on scientific evidence of effectiveness, and depending on which muscle group is being stretched, some techniques may be ineffective or even detrimental. A study in 2013 indicates static stretching (vs dynamic stretching) weakens muscles, or “stretch-induced strength loss,” which you would want to avoid too close to exercise or competition. (Note: other studies have found that reducing the amount of time a static stretch is held (say 15 seconds instead of 30) is beneficial to some individuals pre-exercise.)

Muscle “tightness” results from an increase in tension from active or passive mechanisms. Passively, muscles can become shortened through postural adaptation or scarring; actively, muscles can become shorter due to spasm or contraction. Regardless of the cause, tightness limits range of motion and may create a muscle imbalance – which we have learned will eventually lead to acute or chronic pain. (Source: International Journal of Sports Physical Therapy)

Static stretching is more effective than dynamic stretching for those recovering from hamstring strains, and they seem to recover faster by performing more intensive stretching than less intensive stretching, and a gentle, static stretch relieves the pain associated with a sore Achilles’ tendon. Patients with knee osteoarthritis can also benefit from static stretching to increase knee range of motion. Researchers have shown that 12 months of stretching is as effective as strengthening exercises or manual therapy in patients with chronic neck pain.

The effectiveness of stretching is very individual, but most research concludes a routine of regular stretching, especially as you age, is beneficial in overall conditioning, can alleviate pain, and will improve muscle strength over time.

Injuries are often more painful at night because of the body’s reduced blood flow. Light stretches before bedtime will increase blood flow, and can help alleviate pain. It’s not necessary to stretch the injured area. Performing simple movements, such as swinging your arms or performing any variety of extension stretches will encourage bood flow.

IMG_3402

Yoga & Pilates: Pilates is a form of exercise that focuses on the activation of the deep core muscles, while yoga is a mind-body workout that combines strengthening and stretching poses with deep breathing and meditation or relaxation. Both exercises will improve flexibility, core stability, overall body strength, postural alignment, balance, reduce the chance of re-injury, and help correct muscle imbalances that created the pain initially.

IMG_3388
RunnersWorld

Bergamot: Bergamot essential oil reduces the feeling of pain in the body by stimulating the secretion of certain hormones which lessen the sensitivity of nerves to pain. Massage a few drops into the affected area for temporary relief. (Read more.)

Arnica: dating back to the 1500s, Arnica is used topically for bruises, sprains, muscle aches, wound healing, joint pain, inflammation and swelling from broken bones. Arnica is available in gels and creams, but should never be applied to an open wound or taken orally, except in an extremely diluted form.

Aspirin: A standard (325 mg) or extra strength (500 mg) dose is an effective pain killer and also works as an anti-inflammatory, making it a possible treatment for rheumatoid arthritis, osteoarthritis, lupus, and mixed connective tissue disease. (People at increased risk of bleeding should avoid aspirin. Contact your health professional to discuss possible contraindications before beginning any pain management therapy.)

Over-the-Counter Pain Relievers include:

  • Acetaminophen (Tylenol)
  • Nonsteroidal anti-inflammatory drugs (NSAIDs), including ibuprofen (Motrin, Advil) or naproxen (Aleve, Naprosyn)

Both acetaminophen and NSAIDs reduce fever and relieve pain caused by muscle aches and stiffness, but only NSAIDs also reduce inflammation. (Inflammation is a necessary part of the healing process, and reducing injury-related inflammation may not always be an effective treatment therapy.)

Acetaminophen (Tylenol) works on the parts of the brain that receive the “pain messages.” NSAIDs relieve pain by reducing the production of prostaglandins, which are hormone-like substances that cause pain.

Using NSAIDs increase the risk of heart attack or stroke and have also been known to cause stomach problems. (Source: webmd.com)

One study on the effects of Ibuprofen on skeletal muscle showed that taking ibuprofen during endurance training canceled running-distance-dependent adaptations in skeletal muscle.

Another study confirmed in the laboratory that the use of NSAIDs after exercise slowed the healing of muscles, tissues, ligaments and bones.

During the first 2 to 3-days of an acute injury, taking a NSAID is advised, but once you exceed this window, general advice is let the body do the work. No evidence shows that a NSAID will provide benefits during a run or race, and may hinder.

A list of possible side effects of NSAIDs can be found at nhs.uk.

A Montane athlete, Marcus Scotney, had a potentially life threatening experience following the 2014 Iznik Ultra in Turkey. Read an interview following that event with UK’s key specialist on kidney function, Dr Richard Fluck, regarding the impact of NSAIDs and Sport.

Note: People given a placebo for pain control often report that the pain ceases or diminishes.

 

This post is meant for informational purposes only. It is not intended to provide medical advice. Please consult a physician to discuss your specific pain/injury, the treatment options most appropriate for you, and to ensure there are no contraindications in the treatment options you may adopt.

Read more:

Before You Take Ibuprofen, Try This (Time.com)

Ibuprofen and Running: Anti-Inflammatory Drugs Hurt Your Training

What Are the Best Anti-Inflammatory Spices? Outside Online

How Exercise Works (HowStuffWorks)

RUNNERSWORLD: articles related to stretching for runners

Stretching: The Truth (New York Times)

Main Types of Chronic Pain (verywell.com)

Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise

Best Essential Oils for Pain: EssentialOilExperts.com

 

 

Isn’t this fun? Isn’t fun the best thing to have?

Four laps around the track and I was already negotiating with my training schedule. Maybe I’d make tomorrow a rest day. Maybe I’d cut this run short and add the miles to Sunday’s run.

Six laps around, I had earned the upper hand in the negotiation and settled the dispute – I’d take two weeks off. A few steps later I said out loud, “What am I waiting for?” I stopped running and began a two-week holiday.

It’s a double-edged sword – learning to push the envelope of training without getting injured – although I’ve decided being downright pooped may be a form of injury in and of itself, and knowing when to hit the pause button is the next lesson to be learned in my journey as a runner.

Last year, when I got thoroughly pooped, I threatened to go to the doctor for a full set of blood work. Or was that the year before? A few weeks ago I finally went. The nurse called, “Everything is within normal ranges.” It wasn’t my thyroid, and I wasn’t deficient in this or that (although I could still blame it on menopause).

As usual, my husband was right. It’s training error. Fine.

Cross-Training 2017

On the first day of holiday, I went for a long walk around Lake Junaluska where the landscaping is positively inspirational. My husband went with me. This little slice of paradise is less than a mile from home. I did not even contemplate wearing running gear for this lovely walk.

IMG_3423
Lake Junaluska is a conference and retreat center (part of the Southeastern Jurisdiction of The United Methodist Church) that first opened in 1913.
IMG_3422
There’s a 3.8-mile walking trail around the lake via sidewalks, paved trails, and a wooden bridge.

There were several days of all-day gardening while my bike enjoyed a full tune-up at the local bike shop. Then I rode my bike.

IMG_3424
After a brief 1-mile torturous trek along Hwy 19 into Maggie Valley, my bike route turns right onto Jonathan Creek Road, which is amazingly flat.
IMG_4358
The fog hangs just below the top of the mountains in early morning. That’s a lumber yard and log cabin builder across the street. There’s also farms, old barns, cows, a produce co-op, oodles of churches, RV ‘parks’, a creek, and a few weeks ago, a fox that ran just off the road alongside my bike for several minutes.
IMG_4361
Much to my delight, this route can extend for more than 30-relatively-flat-miles by turning left onto Cove Creek Road. I used the parking lot of this adorable church as my turnaround on yesterday’s ride.

My husband and I decided paddling would be fun and spent several afternoons searching for canoes on Craigslist – until I went for another long walk around Lake Junaluska and realized we could rent a kayak or canoe on the shores of their sandy beach for just $5/hour. A whole new world was opening up all around.

Then my friend, Maria, and I went for a hike – 1-1/2 hours up the mountain to Waterrock Knob and 1-1/2 hours back down again. It was delightful. We’ve already planned another even longer hike for next week.

IMG_4279
The view from my Jeep on the ride up the Blue Ridge Parkway to the trailhead.

IMG_4288

IMG_4295
We stopped along the trail to take a picture.
IMG_4296
Maria and I at Waterrock Knob – the highest peak in the Plott Balsams and the 16th-highest mountain in the Eastern United States.

My two-week hiatus from running ended about six weeks ago, but I haven’t forgotten the lessons learned from being too narrowly focused on running: there’s lots of fun things to do, and isn’t fun the best thing to have?

The Anatomy of a Runner: be still my beating heart.

The second in a series of posts about what makes runners uniquely equipped to run. This discussion attempts to explain the physiological changes to the runner’s heart and address the endurance athlete’s normal anxieties as to whether these changes cause permanent damage.
A 10-15 minute read.
IMG_2995
The heart is located underneath the ribs, and between the lungs.

IMG_2996The heart’s four chambers function as a double-sided pump to circulate oxygen-rich blood to the body through a coordinated and normal rythym. It normally beats about 100,000 times in one day — about 35 million times in a year.

Blood enters the heart on the right – the right atrium to the right ventricle. Leaving the right ventricle, blood travels to the lungs to gather oxygen before entering the left atrium and finally to the left ventricle, which pumps the oxygen-rich blood through a maze of arteries to every cell in the body.

A normal resting heart rate (heart beats per minute while sitting or lying down) is around 60-100 beats per minute. Moderately active humans will likely have a resting heart rate similar to the rest of the population: 60-100 bpm. Professional Athletes and the very fit may have a resting heart beat as low as 40 bpm.

Heart Facts:

IMG_3002
Miguel Indurain

1) The resting heart rate of five-time Tour de France winner Miguel Indurain was once recorded at 28 beats per minute.

2) A sudden increase in the athlete’s resting heart rate is a sure sign of working too hard: over-training, which will inevitably lead to injury, decreases in immune function, and increases the risk of disease.

3) When training is completely stopped the resting heart rate returns to your untrained heart rate within three to four weeks.

4) Factors that have little to do with your level of fitness will impact your heart rate, such as dehydration, heat, or pain. Medications, such as beta-blockers and some migraine medicines, caffeine, and stress will also affect heart-rate. Studies have shown that running by feel and doing the talk test is well correlated with target paces rather than relying on a heart rate monitoring device that can be frustratingly inaccurate in reporting data.

What happens to the body during exercise?

IMG_3004
Howstuffworks.health

In strenuous exercise, just about every system in your body either focuses its efforts on helping the muscles do their work, or it shuts down.

For example, your heart beats faster during strenuous exercise so that it can pump more blood to the muscles, you breathe faster and deeper, and your stomach shuts down so it does not waste energy the muscles can’t use.  (In addition to the stomach, blood is also diverted from the kidneys and liver in favor of the skeletal muscles.)

If you are going to be exercising for more than a couple of minutes, your muscles need oxygen or they stop working. Just how much oxygen is used depends on how well your body gets blood to the muscles and how well the muscles extract oxygen from the blood.

During exercise, active muscles require as much as 20 times more oxygen instantaneously while the inactive muscles’ oxygen demands remain unchanged. Also, working muscles can take oxygen out of the blood three times better than resting muscles.

There is a limit, however, to how deeply you can breathe, the number of times you can breathe per minute, and the speed and frequency with which your heart muscle can contract and pump blood.

So the body’s response to exercise is: lung capacity increases (they become more efficient), heart chambers grow bigger, and heart muscles stronger. This means the blood carries more oxygen, and a greater volume of blood is pumped per beat (the stroke volume).

Runner’s Note: avoid non-steroidal anti-inflammatory (NSAIDS) medications, such as ibuprofen and naproxen, prior to races. These drugs work by inhibiting the function of prostaglandins, compounds that plays a role in inflammation but also protects blood flow to the kidneys. Because blood flow is already decreased to the kidney during running, NSAIDS could further decrease blood flow, placing the kidneys at risk of potential injury. Tylenol or acetaminophen is a better choice since it relieves pain via a different mechanism.

IMG_3014

The Athlete’s Heart

f1-large
Key morphological and functional differences between the athlete’s heart and the failing heart.

A consequence of exercising more than an hour a day (or in excess of 5 hours per week) is Athlete’s Heart, a normal, physiological adaptation of the body to the stresses of physical conditioning and aerobic exercise.

IMG_3006Static training, such as strength training, is mostly anaerobic (the body does not rely on oxygen for performance), and only moderately taxes the heart.

Dynamic (aerobic) exercises, such as running, swimming, skiing, rowing, and cycling, rely on oxygen from the body and taxes the heart to produce the oxygen needed.

People diagnosed with athlete’s heart commonly display three signs that would indicate the condition: a slower than normal heartbeat (bradycardia) along with irregular rhythms, an enlarged heart (cardiomegaly), and the thickening of the muscular wall of the heart (Cardiac Hypertrophy), specifically the left ventricle (by approximately 15-20%), which pumps oxygenated blood to the aorta.

f2-large1
AHA Journals

Both static and dynamic exercises cause the thickening of the left ventricular wall, however weight-lifting or resistance training causes the muscle to thicken to increase blood pressure necessary for anaerobic exercise, but does not create a more efficient stroke volume or lower the pulse rate. Combining a form of aerobic exercise and resistance training will, of course, show the benefits of an enlarged heart and lower pulse rate.

Athlete’s heart is not dangerous for athletes – although a nonathlete with the same symptoms may be found to have a serious cardiovascular disease. Nor is athlete’s heart the cause of sudden cardiac death during or shortly after a workout, which has instead been linked to a genetic disorder (hypertrophic cardiomyopathy).

The athlete’s heart will return to its normal size and all symptoms disappear with detraining, usually within 3-6 months.

The Athlete’s Heartbeat Anomaly

Up to 69 percent of aerobically trained athletes demonstrate Phasic Sinus Arrhythmia, a pulse that speeds and slows with respiration (what feels like a skip between beats).

Skipped heartbeats are usually premature heartbeats – one beat quickly follows another, and the resulting pause in the rhythm of your normal heartbeat is assumed to be a “skipped” beat. This benign rhythm discrepancy becomes more common as you become more fit, and temporarily disappears when you increase your heart rate with exercise.

Phasic Sinus Arrhythmia usually doesn’t indicate a problem unless accompanied by chest pain, light-headedness or other symptoms.

(Click here for more information on the Athlete’s Heart.)

Athletes = Heart Problems?

A significant number of heart attacks or sudden death in marathon runners have been reported over the years and it’s probably safe to say the news is unsettling to runners everywhere.

Subsequent studies have shown that unlike an enlarged heart caused by stress, heart disease or high blood pressure, the physiological remodeling of the athlete’s heart is generally beneficial and does not progress to heart failure.

What we hear most are that athletes show right ventricular dysfunction and elevated levels of cardiac troponin – biomarkers typically found in left ventricular failure – immediately following a race or long training run. Symptoms generally disappear, however, within 1 week post race.

A study of 114 world-class endurance athletes who had undergone uninterrupted exercise training over a 4- to 17-year period and competed in two to five consecutive Olympic Games demonstrated that long-term, high-intensity exercise training does not lead to cardiac dysfunction, or adverse clinical events (although one study found substantial heart chamber enlargement persisted in 20% of retired and deconditioned former elite athletes after 5 years, which has opened the question as to whether certain individuals experience permanent physiological changes. It is generally considered that more research is needed to determine possible predisposing factors for these individuals.)

Twenty amateur long-distance runners between the ages of 18 and 60, who were going to run in the Quebec City Marathon were evaluated for heart damage post-marathon. In half of the runners, researchers observed that the marathon prompted a decrease in left and right ventricular function with some experiencing swelling and reduced blood flow in the heart. All symptoms were temporary.

Dr. Eric Larose, of the Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ) in Canada, says that the heart muscle changes they observed were more common in runners who had lower fitness levels and who trained less – reaffirming that being less prepared or undertrained for the marathon has the potential to cause more damage to the body than for those who have adequately prepared through proper training for the distance.

Click here for more information about sudden cardiac arrest in athletes and for the American Heart Association (AHA) 12 point sudden cardiac death screening guidelines.

VO2max

The first sentence in a 2006 comprehensive review on training (Midgley and McNaughton) reads, “The maximal oxygen uptake (VO2max) has been suggested to be the single most important physiological capacity in determining endurance running performance.”

Numerous training programs for distance runners (and other endurance sports) have become fixated on the VO2max concept leaving us with the assumption that it must be directly tied to performance and fatigue. Some would say it is not.

IMG_3010

VO2max is a measure of the maximum volume of oxygen that an athlete can use. It is measured in millilitres per kilogramme of body weight per minute (ml/kg/min), and has been used as a traditional measurement of endurance since the 1920s.

The amount of oxygen consumed to produce energy (and hence the rate at which you exhale carbon dioxide) increases as exercise continues. However, there is a maximum level of oxygen that can be consumed and even when exercise continues, oxygen consumption plateaus. At least this has been the thinking for many years.

Studies suggest this plateau phenomenon can only be identified in about 30% of tested subjects (Noakes 1998b; M. Doherty tell al 2002), and is seldom identified in children at all (Rowland 1993; Rowland and Cunningham 1992).

Nonetheless, some training programs focus almost exclusively on improving VO2max to improve performance even though studies show that VO2max does not change in elite runners and does not correlate with performance.

In one study by Smith and Donnell of untrained individuals, changes in VO2max over a 36 week training period substantially increased by 13.6%, but all of those gains were seen in the first 24 weeks of the study with no further increases during the final 12 weeks.

Paula Radcliffe’s VO2max was monitored from 1992 – 2003 (Jones 2006). Her training increased from 25-30 miles per week (with a VO2max of 72 at the time) to 120-160 miles per week, yet her VO2max did not change despite the change in volume and intensity of training.

Meanwhile, the study of a female Olympic level runner showed that while the athlete’s 3,000m time improved by 46 seconds, VO2max actually decreased from 72 ml/kg/min to 66 ml/kg/min (Jones, 1998).

Training Note: studies show VO2max values can improve with training but independently decrease with age. However, the degree of trainability affects VO2max widely; for example, conditioning may double VO2max in some individuals, and will never improve it at all in others (Bouchard, 1999). Also it has been shown that respiratory muscle training does not improve VO2max of triathletes and marathon runners (Amonette & Dupler 2002).

(On-line Calculators will determine VO2max using age, body mass, max and resting heart rates, or recent exercise times.)

IMG_3012

Dr. Timothy Noakes is a highly decorated and respected South African scientist, professor, runner and author (notably Lore of Running now in its fourth edition).

Dr. Noakes has challenged paradigms in the discipline of exercise physiology, including VO2max, where he introduced the concept of a central governor (located in the brain) that prevents the muscles from working at their maximum level for extended periods to protect the body (and more specifically the heart) from permanent damage or death.

The central governor regulates power output so that the task, or exercise is completed in the quickest, most efficient manner while maintaining a reserve of physical and mental capacity. In other words, Noakes contends the central governor acts as a regulator for exercise rather than exercise being limited by a person’s VO2max.

The concept that the central governor would be located in the brain, or concluding that it is actually the brain that restricts endurance has been one of the more contentious of Noakes’ conclusions (a topic we’ll cover extensively when this series reaches the brain).

IMG_3013
Stéphane Mifsud

But for the argument presented here, consider French free diver Stéphane Mifsud, who stayed underwater unaided for 11 minutes and 35 seconds in 2009 – a world record for breath-holding at the time, and one of several world records he holds. His lung capacity was measured at 10.5 litres, twice the capacity of most men.

He attributes his success in part to ignoring the overwhelming distress signals that force us to gasp long before we’re out of oxygen.

A quote from his website says, “Our minds have the power to destroy or push us beyond our limitations.”

IMG_3016
RunnersConnect

Do the muscles fatigue and reduce their output because the body has reached its maximum potential to deliver oxygen? Does the heart force the muscles to reduce output because it senses a lack of blood flow (oxygen) and works to protect itself? Or, does the brain anticipate when the blood and oxygen supply to the heart is about to become inadequate and reduce the recruitment of the muscles causing exercise to diminish or cease (fatigue) before damage is incurred to the heart or skeletal muscles? Is our training dependent on the final answer to these questions?

To be a successful endurance athlete requires muscles with superior contractility that allows them to run very fast despite the limiting output of the heart.

Obviously oxygen is the universal currency of every athletic endeavor. Muscles require oxygen for the chemical reaction that converts food energy into motion, and the best athletes are those who use oxygen best.

If we agree that Noakes’ Central Governor Model is the accepted de facto model (in the absence of another indisputable approach), VO2max is not the only factor determining exercise performance.

Noakes suggests that VO2max is the result of two distinct physiological processes:

  1. the maximum pumping capacity of the heart, which determines the peak rates that blood and oxygen can be transported to the exercising muscles, and
  2. the athlete’s exercising muscles – where the best athletes are those whose muscles have superior contractility (the capacity of the muscle to contract or shorten forcefully).

The ability to process oxygen (VO2max) as a measurement of how fast you can run is not useful in isolation. How efficiently you put that oxygen to use is equally important.

Noakes offers a useful analogy: “supplying fuel at the same maximum rate to the engines of a Formula 1 racer and a family sedan would not eliminate the performance difference between the two. This would be due to limitations, not in the rate of fuel (oxygen) supply to the engine, but in other factors inherent in the engine (muscle) itself.”

Athletes with superior athletic ability have muscles with a superior capacity to generate force, which is essentially independent of the oxygen or fuel supply. Just as we suspected in our last discussion of the upper leg, it’s all about that bass.

Next up: Wooly Chaps and the Big Joint (the knee).

Running Facts:

High-intensity exercise may not lower blood pressure as effectively as moderate-intensity exercise. In one study, moderate exercise (jogging 2 miles a day) controlled high blood pressure so well that more than half the patients who had been taking drugs for the condition were able to discontinue their medication.

Studies show that yoga and tai chi, an ancient Chinese exercise involving slow, relaxing movements, may lower blood pressure almost as well as moderate-intensity aerobic exercises.

Experts recommend at least 30 minutes of exercise on most — if not all — days.

Benefits of aerobic exercise include cancer prevention (including colon, breast and prostate cancers), reduces the risks & symptoms associated with osteoporosis, diabetes, depression, cardiovascular disease, and helps improve cognitive function.

Everyone, especially people with high blood pressure, should breathe as normally as possible through exercise. Holding the breath increases blood pressure.

IMG_3015There is such a thing as a broken heart. Takotsubo cardiomyopathy (TC), or broken heart syndrome, revolves around the weakening of the muscular portion of the heart that’s triggered by emotional stress presenting with the same symptoms as a heart attack: chest pain, shortness of breath, and sweating – although the arteries are completely clean, no blockages.

Patients respond to supportive care and to the same types of medicines used for patients with weak hearts. Typically the heart function begins to improve and is back to normal within six weeks.

Experts say the best recovery for a broken heart also includes yoga, meditation, talking to and socializing with friends, and exercise.

Reader Alert!

Endurance athletes, especially those with a family history of heart disease and other coronary risk factors, should not consider themselves immune to either sudden death or to coronary heart disease and should seek medical advice immediately if they develop any symptoms suggestive of ischemic heart disease. Physicians should not assume that “physically fit” marathon runners cannot have serious, life-threatening cardiac disease.

This post is meant for informational purposes only.

References not previously linked within this post:

Athletic Heart Syndrome, Wikipedia

Central Governor Model: A review of Professor Noakes’ Revolutionary Model of Performance, TrainingScience.net

The Fallacy of Vo2max and %VO2max, Science of Running

The Heart of Trained Athletes, AHA Journals

Mitochondrial adaptations to physiological vs. pathological cardiac hypertrophy, Oxford Academic

The Anatomy of a Runner: it’s all about that bass (the Upper Leg & Glutes)

IMG_2926.PNG

The first in a series of posts about what makes runners uniquely equipped to do what we love to do most. . . run.

Functional Overview:

The lower leg is the part of the lower limb that lies between the knee and the ankle. The thigh is between the hip and knee and the term “lower extremity” is used to describe the colloquial leg. For this discussion, the runner’s base is considered the upper leg, which begins at the hip and the Gluteus Maximus and continues to the knee.

In human anatomy the knee is the connecting line between the upper leg and the lower leg. This connection, and the resulting tension caused by its relationship between the two has caused the topic of the knee to be moved to another post. We’ll get a feel for the knee’s function as it relates to the upper leg, but delve into specific knee injuries another time.

Key Facts: The only bone in this region is the femur, the largest bone in the body. The femur’s head creates the ball of the ball-and-socket-style hip joint. The base of the femur makes up part of the knee.

Major Players:

Gluteus Maximus (the “glutes”): muscle located in the buttocks regarded as one of the strongest muscles in the human body. Responsible for movement of the hip and thigh, contributes to good running form and alignment. Standing up from a sitting position, climbing stairs, and staying in an erect position are all aided by the gluteus maximus.

Hamstrings: three muscles at the back of the thigh that affect hip and knee movement.

Quadriceps: the strongest and leanest muscles of the body – a four-muscle group at the front of the thigh that work to extend the knee and lower leg.

Knee: a pivot-like hinge joint that connects the bones in the upper and lower leg. It is the largest joint in the human body. The knee is where the femur in the upper leg meets the tibia and fibula bones of the lower leg. The patella, or kneecap, is at the center of the knee.

Tendons, ligaments, and protective elements, such as cartilage and bursa, connect and protect the bones to keep them in place and prevent them from grinding against each other while also allowing the knee joint to flex and twist slightly.

Glutes

gluteus_all
Healthline.com

Why it hurts: The most common cause of a gluteus injury is stretching or straining one of the muscles beyond its normal range of motion – especially prominent with soccer, football, and baseball players who make sudden movements and overexert their legs during a play.

However, track events such as hurdles or the long jump, or a runner’s rapid acceleration (particularly up hills) can also increase the likelihood of a gluteal strain.

Excessive acute stress on a gluteal muscle can cause it to tear, which usually results in immediate pain and leg weakness.

Where it hurts: symptoms include numbness in the buttocks, hip and possibly the thigh down to the ankle with difficulty walking normally and rising from a seated position.

Prevention/Recovery: rest, cold/hot therapy, massage, and eventually strengthening exercises. According to a review in the November 2005 issue of “New Zealand Journal of Physiotherapy,” a full squat and running on an incline require the greatest gluteus maximus function. Start slow and easy.

Test Your Strength:

30 Second Chair to Stand test: this test measures the ability to stand up from a seated position as many times as possible in a thirty-second period of time. Testing the number of times you can stand up in a thirty-second period helps assess strength, flexibility, pain, endurance, and progression of recovery.

Runner’s Note: according to the physique-oriented website Waist, Hips & Thighs, doing repeat sprints using starting blocks is the best way to build the gluteal muscles. If you’re hoping to avoid the over-emphasized glutes (aka “bubble butt”), focus on long, easy mileage rather than short, intense bursts of speed.

Hamstrings

Why it hurts: also known as a pulled hamstring, is defined as an excessive stretch or tear of muscle fibers and related tissues. Hamstring injuries are common in athletes participating in many sports and are very difficult to treat and rehabilitate. Track and field athletes are particularly at risk, as hamstring injuries have been estimated to make up 29% of all injuries in sprinters.

Research proposes predisposing factors to injury include muscle weakness, muscle imbalance, poor flexibility, fatigue, inadequate warm up, poor neuromuscular control, and poor running technique. One of the few predisposing factors that most researchers agree upon, however, is previous hamstring injury. Brokett et al. (2004) stated that “the athletes most at risk of a hamstring strain are those with a previous history of such injury” and noted that 34% of the hamstring injuries were recurrences.”

Cameron et al. also found that 34% of injuries recur in the same season. Arnason et al. generalized these numbers, saying that previous injury was in itself an independent risk factor for re-injury.  (Reference: Wikipedia)

Where it hurts:

Grade 1: Sensation of cramping or tightness and a slight pain when the muscles are stretched or contracted.

IMG_2927Grade 2: Immediate pain more severe than the pain of a grade one injury. It is confirmed by pain on stretch, swelling and contraction of the muscle.

Grade 3: A grade three hamstring strain is a severe injury. Immediate burning or stabbing pain, unable to walk without pain. The muscle is completely torn and there may be a large lump of muscle tissue above a depression where the tear is.

Prevention/Recovery: almost always, the hamstring strain occurs just before the lead foot hits the ground, when hamstring tension peaks to resist forward motion of IMG_2924the swinging leg. Incorporate agility and trunk stabilization exercises, stop and stretch during runs.

Avoid over-the-counter anti-inflammatories, which can interfere with tendon remodeling.

Deep tissue massage is better for recovery and pain.

It is usually possible to continue running through recovery.

Shorten your stride, increase cadence, and keep the pace slow.

If the injury is too painful to run, avoid prolonged wet-vest pool running. Although it is true pool running maintains aerobic capacity while recovering from injuries such as stress fractures, pool running fails to adequately stress the hamstrings since the resistance provided by the water forces the quads to pull the lead leg forward while the hamstrings are stressed only while pulling the leg back.

The natural function of the hamstrings is to fire eccentrically when they lengthen to stop forward motion of the lead leg. By failing to strengthen the hamstring eccentrically, pool therapy often results in rapid hamstring re-injury as soon as the runner attempts to run fast.

 

Test Your Flexibility:

Test it With:  Toe Touches. To see if your ‘strings are supple enough for Deadlifts and Olympic lifts, put your feet together, bend over and touch your toes. Can’t reach? Back rounds when you do? Better loosen up.

image

Fix it With:  Leg Lowering Pattern. Lie on your back with both legs in the air. Place a band around one foot, then lower your opposite leg, keeping the leg straight and core tight. Perform 3 sets of 10 reps on each leg.  (Read more at Champions Are Made In The Off-Season.)

image

 

Runner’s Note: the glutes and hamstrings have far more fast-twitch muscle fibers than the quads, making them more powerful and explosive. If too much attention is placed on strengthening the quads, thereby creating an imbalance, the glutes and hamstrings will suffer. A lack of strength in the hamstrings compared with the strength in the quads can result in an unstable knee joint and assorted lower-body injuries.

Quadriceps

The Marathoner vs The Sprinter

Why it hurts: As mentioned above with the hamstring movement, eccentric loading occurs when muscles lengthen and shorten at the same time. When we run, our quadriceps contracts when our foot touches the ground. This stabilizes our knee and stops us from collapsing. But even stabilized, our knee bends slightly, stretching our quadriceps as it shortens. This eccentric tug-of-war creates enormous tension on the quads.

Where it hurts: Athletes with quadriceps strains often complain of a “pulling” sensation in the front of the thigh. Pain, swelling, bruising and muscle tenderness may also occur. Its severity is categorized by the same grades as with the Hamstring injury.

Prevention/Recovery: a counterintuitive strategy for recovering from a quad injury was offered by Pete Magill in Runner’s World: Cure Quad Pain, Calf Pain, and Heavy Legs: “Running downhill can cure quad pain once a runner’s legs adapt to the eccentric overload caused by the activity,” says Beaverton, Oregon, coach and exercise scientist Tom Schwartz. “Initially, the soreness caused by downhill running can be quite harsh.

A parallel is the soreness caused by starting a new weight training regimen. Soreness is caused by the lowering of weights, which is the eccentric loading. Lifting weights, which is concentric loading, doesn’t cause soreness.”

Brisk downhill running increases the eccentric load on our quads, causing more muscle damage. The good news is that once our body repairs this damage, we’re left with quads that are pain-free, stronger and protected from further injury.

Although there is no substitute for real descent repeats, eccentric single-leg squats and lunges may also prepare the muscles for downhills.

IMG_2869

Other eccentric Quad strengthening exercises include the straight-leg deadlift, good morning squat and the calf raise used by shortening the concentric phase to one second and extending the eccentric phase to at least three seconds. (Read more at runningcompetitor.com.)

(Additional Reading: Quad Strengthening Exercises from the Bay Area Orienteering Club.)

Runner’s Notes:

Weak hip muscles can allow the legs to angle inward or outward instead of keeping each stride in line.

Underdeveloped gluteal muscles might cause the runner to lean his or her trunk forward.

An imbalance between opposing muscles, particularly, is a major cause of the repetitive stress injuries.

Next up in our series: be still my beating heart.

Meghan Trainor declared, “I’m all about that bass, ‘Bout that bass, no treble, …”, and while runners everywhere train by the very beat of their heart, Meghan’s lyrics may be more true than we first thought.

IMG_2930.JPG

The Anatomy of a Runner

Some athletes have left an indelible mark – they are so spectacularly talented it simply boggles the mind.

Michael Jordan comes to mind. I was lucky enough to have watched him play at the United Center in Chicago some years ago. He was mesmerizing. And I’m just old enough to remember Walter Payton running across the field for a touchdown, like art in motion. . . the same as watching Michael Phelps swim, or Shalane Flanagan’s stride. The examples are endless, but what is it that makes these athletes successful? The magic question.

It would be easy enough to blame it on genetics, but I would offer up Misty Copeland – the first African American woman to be named principal dancer with the legendary American Ballet Theatre. Whatever your ballet stereotypes, Copeland probably doesn’t fit them. She’s been told she shouldn’t wear a tutu – she doesn’t have the right legs, her muscles are too big.

IMG_2882Emil Zátopek was the first runner to break the 29-minute barrier in the 10,000 meters, and the instigator of interval training. Even as he trained to become an Olympian, he wore work boots instead of running shoes, and moved his torso in a way that many criticized as inefficient. His tortured facial expressions prompted one sports columnist to remark that he “ran like a man with a noose around his neck.”

He is the only athlete to win the 5,000 and 10,000 meter races, as well as the marathon (a race he had never run) in one Olympic Games.

IMG_2871.JPG

What many of our favorite athletes have in common is that they were unlikely candidates for their sport. They move funny, have unorthodox body types, suffered devastating setbacks, started their sport late in life. . . or didn’t burn out despite starting too early. We all have more in common than we thought.

I hold my elbows too far out when I run. It probably makes me slower. Maybe you kick one leg out at the back of your stride, over-pronate, or carry your hips off-center. Does it matter? If we review the most unorthodox athletes of all time and consider their accomplishments, I would have to suggest the answer is no, it doesn’t matter.

Does it cause injuries? Maybe.

IMG_2885.JPGMy first real issue was that my toes went numb when I ran. My husband and I tried everything – larger shoes, different socks, orthopedic inserts. Once we figured out the problem was Morton’s Neuroma, I was on a mission to discover a fix, which turned out to be as simple as taking one vitamin B-12 each day – for ten years and counting.

Whatever the injury/pain/issue, the anatomy behind the issue became as fascinating to me as the running itself.

Runners have hundreds of issues in common. We have a propensity for pulling the same muscles: the quad, hamstring and/or calf muscles. Then there are those dreaded black toenails (cut them short!).

Muscles that are the most prone to cramps are those that cross two joints. A weakened Tensor Fascia Latae can tug on the knee and vice versa. Gentle stretching may help the sore Achilles’ tendon and an out of sorts Plantar Fasciitis, but does very little to loosen a tightened ITB. If you have knee problems, it might be wise to strengthen the hip. A sore back? Strengthen the abs.

IMG_2870

Every athlete is different. Our execution varies from one to the other. What works for me may not work for you, and vice versa. One thing is certain, however, the anatomy behind our running that can (and eventually will) affect our running is shared by us all, and it spans from our brains to our little toe.

A better understanding of our anatomy may be the secret sauce in the never-ending quest to remain injury free – something else we all have in common, whether you’re a runner, walker, dancer, gardener, or mom lifting baby.

(Reader Alert: consider this the prologue of another Fartlek series of posts: The Anatomy of a Runner.)

Next up:  The Anatomy of a Runner:  it’s all about that bass.

What keeps me running?

It’s been three days since my downhill marathon, and my quads are still on fire.

The first 6 miles were appropriately described as a “rolling 10k.” It was one of the most beautiful 6 miles on earth. Buses had driven us up the mountain at 6:30am under a clear, starry sky where every constellation could be identified. Quiet conversations ensued amongst us with tales of past and future races here, there and everywhere.

IMG_2503.PNG
Peak to Creek Marathon Elevation (finishlinepros.com)

The starting line was in front of a Marathon gas station along a quiet mountain road, boasting a double row of porta pottys where we all stood quietly in line. .  twice.

There were 300 some odd runners, and only those at the front of the pack could possibly hear the comments the Race Director made at the start. I didn’t even hear what actually started the race, but we all headed out at 8am sharp among a momentary rise in the decibel level of excited runners.

The mountains in the distance were spectacular in orange, red and yellow. Christmas trees were being harvested from a farm that spread across dozens of acres, and despite the challenging terrain of these first 6 miles, nothing could distract from the spectacular views. I made a point to pay attention to the surroundings during this race, and it paid off handsomely.

Hunters lined the road deep into the second half of the course, their dogs barking wildly across the valley. We passed a black bear strapped to the back of a truck – something I had never seen. We ran between gigantic boulders that seemed to reach the clouds as if the trail had been blasted right through the granite mountain. A creek followed us down the mountain for most of the second half reminding me of my own favorite long run spot at home. Although, everything was not bliss. . .

Most of the course was in the National Forest on unpaved roads. Camber was not to be an issue, although I’ve never met a switchback that didn’t camber. Rainwater runoff left deep dips in the road that could be treacherous, and more than a few times we landed sure-footed on large gravel stones.

My feet were terribly sore as we reached the home stretch, my legs like mush, and I had battled an upset stomach for hours (my husband reminded me that my stomach has never tolerated blue Gatorade very well). My finish time was 4:41:00.

img_2513
I was trying to hold it together across the finish line, but the lady’s expression in front of me was how I really felt.

The post-mortem was held Sunday morning over coffee.

My husband thinks it could be training error. I think it could be race strategy. Then we spent a good amount of time on the subject of why I want to run marathons at all, and what really motivates me to run in the first place.

I admitted (agreed) that I am competitive, and I doubt I will ever be the kind of person that wants to simply ‘finish’ a marathon. Reluctantly, I also admitted it seemed futile to spend that many hours in pain if not to find an acceptable spot among my peers. It’s who I am, and I suppose it was good to admit this at 56 years old. More importantly, the conversation forced me to think about why I keep running at all.

A post I had written in March 2014 popped up on this blog’s Trending Now list that same afternoon. I couldn’t even remember what I had written, so I read it. The entire post was about running hills, and the last paragraph a quote from a book I had read on Chi Running. It is a fairly good answer to why I keep running at all.

A new idea is to transform running from a sport to a practice. If you see running only as a sport, you’re limiting yourself to getting only the physical benefits. It’s like the difference between stretching and yoga…between sitting in a waiting room and sitting in meditation…between training your body to run faster or farther and practicing to run in a mindful and masterful way.

Making an activity a practice is a process of self-mastery. You are no longer simply practicing that activity; you use it to learn about, understand, and master yourself as well as the activity.”

(Excerpt From: Dreyer, Danny. “ChiRunning.” Simon and Schuster, 2009.)